OpenDeltaMirror/opendelta/delta_configs.py

476 lines
22 KiB
Python
Raw Normal View History

2022-02-14 21:19:03 +08:00
import os
import re
from typing import Union, Dict, Any, Tuple, Optional
from opendelta import __version__ as opendelta_version
from opendelta.utils import logging
from opendelta.utils.signature import get_arg_names, get_arg_names_inside_func
import transformers
from transformers.file_utils import (
PushToHubMixin,
is_offline_mode,
cached_path,
is_remote_url,
get_list_of_files,
hf_bucket_url,
)
from packaging import version
import json
import copy
CONFIG_NAME = "config.json"
transformers_version = transformers.__version__
checked_package_versions = ["transformers_version", "opendelta_version"]
logger = logging.get_logger(__name__)
FULL_CONFIGURATION_FILE = "config.json"
_re_configuration_file = re.compile(r"config\.(.*)\.json")
class BaseDeltaConfig(PushToHubMixin):
r"""Base class for all configuration classes. Handles a few
parameters common to all delta models' configurations as well as methods for loading/downloading/saving configurations.
Class attributes (overridden by derived classes):
- **delta_type** :obj:`str`) -- the name of the delta modules, used to create the correct :py:class:`~opendelta.AutoConfig`.
Args:
modified_modules (:obj:`List[str]`, *optional*, defaults to :obj:``None``)
The list of keys to determine which modules you want to modify. OpenDelta will take every modulees that
**ends with** the one of the provided keys as the modification target. When not given any value, i.e.
``modified_modules=None``, the delta module will use the it corresponding default modification modules.
Taking DistilBertModel with an classifier on top as an example:
.. note::
**Examples**: When adding delta to DistilBertModel,
1. set to ``["0.attention.out_lin"]`` will add delta modules to the attention output of distilbert's
ayer 0, i.e., ``distilbert.transformer.layer.0.attention.out_lin``.
2. set to ``["attention.out_lin"]`` will add the delta modules in every layer's ``attention.out_lin``.
unfrozen_modules (:obj:`List[str]`, *optional*, defaults to :obj:`["deltas"]` )
The modules that are unfrozen
during training. Including the ones that are newly introduced as delta modules, and the ones that are
originally a part of the model but set to trainable (:obj:`requires_grad=True`) to train together with the
delta modules. OpenDelta will take every modules that **ends with** the one of the provided keys and all
its sub-modules and paramters as trainable.
.. note::
**Examples**: When adding delta to DistilBertModel,
1. set this argument to ``["bias"]`` will make all bias terms tunable.
2. set this argument to ``["attention"]`` will make all parameters in all attention modules tunable.
3. set this argument to ``["deltas"]`` will make all the parameters in the newly introduced delta
modules tunable.
4. set this argument to ``["classifier"]`` will make all parameters in the classifier tunable.
5. set this argument to ``["3.ffn.lin2", "deltas", "classifier"]``, will make all parameters in
the third layer's feed forward layer's send linear layer, the detla modules, and the classifiers modules
tunable.
common_structure (:obj:`bool`, *optional*, default to :obj:`None`): Whether using the common structure mapping of
the transformer model when designating :obj:`modified_modules` and :obj:`unfrozen_modules`.
backbone_class (:obj:`str`, *optional*, default to :obj:`None`): The name of backbone model's class, e.g.
``RobertaForMaskedLM``. Saving this infomation let the users explicitly know on which backbone the
delta model is trained.
backbone_checkpoint_name (:obj:`str`, *optional*, default to :obj:`None`): The specific checkpoint of the model.
In ideal case, it should be the url to download the checkpoint. However, we do not force the user to
specify a downloadable url here.
backbone_hash (:obj:`str`, *optional*, default to :obj:`None`): The md5-hash of the backbone model. It is
calculated using the string representation of the model and the sequential expansion of all the
parameters in the model. When loading a delta checkpoint in strict mode, the hash of the backbone model
will be compared to the hash in this config.
"""
delta_type: str = ""
def __init__(self,
modified_modules = None,
unfrozen_modules = ["deltas"],
common_structure=False,
backbone_class = None,
backbone_checkpoint_name = None,
backbone_hash = None,
):
arg_names = get_arg_names(BaseDeltaConfig.__init__)
for arg_name in arg_names:
setattr(self, arg_name, locals()[arg_name])
@classmethod
def from_finetuned(cls, finetuned_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "BaseDeltaConfig":
r"""
Instantiate a :obj:`BaseDeltaConfig` (or a derived class) from a finetined delta module configuration.
Args:
finetuned_model_name_or_path (:obj:`str` or :obj:`os.PathLike`): This can be either:
* a string, the *model id* of a finetuned delta model configuration hosted inside a model repo on
deltahub.co. Valid model ids can be located at the root-level, like ``bert-base-uncased``, or
namespaced under a user or organization name, like ``dbmdz/bert-base-german-cased``.
* a path to a *directory* containing a configuration file saved using the :meth:`BaseDeltaConfig.save_finetuned` method, e.g., ``./my_model_directory/``.
* a path or url to a saved configuration JSON *file*, e.g., ``./my_model_directory/configuration.json``.
cache_dir (:obj:`str` or :obj:`os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained delta model configuration should be cached if the
standard cache should not be used.
.. code-block:: python
delta_config = LoraConfig.from_finetuned("DeltaHub/lora_t5-base_mrpc")
"""
config_dict, kwargs = cls.get_config_dict(finetuned_model_name_or_path, **kwargs)
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warn(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
def save_finetuned(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
"""
Save a configuration object to the directory :obj:`save_directory`, so that it can be re-loaded using the
:meth:`BaseDeltaConfig.from_finetuned` class method.
Args:
save_directory (:obj:`str` or :obj:`os.PathLike`): Directory where the configuration JSON file
will be saved (will be created if it does not exist).
push_to_hub (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether or not to push your model to
the Hugging Face model hub after saving it.
.. warning::
1. Will raise error if you haven't config a Huggingface Model Hub.
2. Using ``push_to_hub=True`` will synchronize the repository you are pushing to with ``save_directory``,
which requires ``save_directory`` to be a local clone of the repo you are pushing to if it's an existing
folder. Pass along ``temp_dir=True`` to use a temporary directory instead.
kwargs:
Additional key word arguments passed along to the
`PushToHubMixin.push_to_hub <https://huggingface.co/docs/transformers/master/main_classes/model#transformers.file_utils.PushToHubMixin.push_to_hub>`_ method.
"""
if os.path.isfile(save_directory):
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo = self._create_or_get_repo(save_directory, **kwargs)
os.makedirs(save_directory, exist_ok=True)
# If we save using the predefined names, we can load using `from_pretrained`
output_config_file = os.path.join(save_directory, CONFIG_NAME)
self.to_json_file(output_config_file, use_diff=True)
logger.info(f"Configuration saved in {output_config_file}")
if push_to_hub:
url = self._push_to_hub(repo, commit_message=commit_message)
logger.info(f"Configuration pushed to the hub in this commit: {url}")
@classmethod
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "BaseDeltaConfig":
r"""
Instantiate a :obj:`BaseDeltaConfig` from a python dictionary of parameters.
Args:
config_dict (:obj:`Dict[str, Any]`):
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the :py:meth:`~PretrainedConfig.get_config_dict` method.
kwargs (:obj:`Dict[str, Any]`):
Additional parameters from which to initialize the configuration object.
Returns:
:obj:`BaseDeltaConfig`: The configuration object instantiated from those parameters.
"""
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
accept_args = get_arg_names(cls.__init__) + get_arg_names(BaseDeltaConfig.__init__)
unused_config_keys = []
for config_key in list(config_dict.keys()):
if config_key not in accept_args:
config_dict.pop(config_key)
unused_config_keys.append(config_key)
logger.warning(f"The following keys are not used by {cls}.__init__ function: {unused_config_keys}")
config = cls(**config_dict)
# Update config with kwargs if needed
to_remove = []
for key, value in kwargs.items():
if hasattr(config, key):
setattr(config, key, value)
if key != "torch_dtype":
to_remove.append(key)
for key in to_remove:
kwargs.pop(key, None)
logger.info(f"Model config {config}")
if return_unused_kwargs:
return config, kwargs
else:
return config
@classmethod
def get_config_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""[NODOC]
From a ``pretrained_model_name_or_path``, resolve to a dictionary of parameters, to be used for instantiating a
[``PretrainedConfig``] using ``from_dict``.
Parameters:
pretrained_model_name_or_path (:obj:`str` or :obj:`os.PathLike`):
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
Returns:
:obj:`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object.
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
use_auth_token = kwargs.pop("use_auth_token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
# from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {"file_type": "config", "from_auto_class": from_auto_class}
# if from_pipeline is not None:
# user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
if os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
else:
configuration_file = get_configuration_file(
pretrained_model_name_or_path,
revision=revision,
use_auth_token=use_auth_token,
local_files_only=local_files_only,
)
if os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, configuration_file)
else:
config_file = hf_bucket_url(
pretrained_model_name_or_path, filename=configuration_file, revision=revision, mirror=None
)
try:
# Load from URL or cache if already cached
resolved_config_file = cached_path(
config_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
use_auth_token=use_auth_token,
user_agent=user_agent,
)
# Load config dict
config_dict = cls._dict_from_json_file(resolved_config_file)
except EnvironmentError as err:
logger.error(err)
msg = (
f"Can't load config for '{pretrained_model_name_or_path}'. Make sure that:\n\n"
f"- '{pretrained_model_name_or_path}' is a correct model identifier listed on 'https://huggingface.co/models'\n"
f" (make sure '{pretrained_model_name_or_path}' is not a path to a local directory with something else, in that case)\n\n"
f"- or '{pretrained_model_name_or_path}' is the correct path to a directory containing a {CONFIG_NAME} file\n\n"
)
if revision is not None:
msg += f"- or '{revision}' is a valid git identifier (branch name, a tag name, or a commit id) that exists for this model name as listed on its model page on 'https://huggingface.co/models'\n\n"
raise EnvironmentError(msg)
except (json.JSONDecodeError, UnicodeDecodeError):
msg = (
f"Couldn't reach server at '{config_file}' to download configuration file or "
"configuration file is not a valid JSON file. "
f"Please check network or file content here: {resolved_config_file}."
)
raise EnvironmentError(msg)
if resolved_config_file == config_file:
logger.info(f"loading configuration file {config_file}")
else:
logger.info(f"loading configuration file {config_file} from cache at {resolved_config_file}")
return config_dict, kwargs
@classmethod
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
with open(json_file, "r", encoding="utf-8") as reader:
text = reader.read()
return json.loads(text)
def __repr__(self):
return f"{self.__class__.__name__} {self.to_json_string()}"
def __eq__(self, other):
return self.__dict__ == other.__dict__
def to_json_string(self, use_diff: bool = True) -> str:
"""[NODOC]
Serializes this instance to a JSON string.
Args:
use_diff (:obj:`bool`, *optional*, defaults to :obj:`True`):
If set to :obj:`True`, only the difference between the config instance and the default ``PretrainedConfig()``
is serialized to JSON string.
Returns:
:obj:`str`: String containing all the attributes that make up this configuration instance in JSON format.
"""
if use_diff is True:
config_dict = self.to_diff_dict()
else:
config_dict = self.to_dict()
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Union[str, os.PathLike], use_diff: bool = True):
"""[NODOC]
Save this instance to a JSON file.
Args:
json_file_path (:obj:`str` or :obj:`os.PathLike`):
Path to the JSON file in which this configuration instance's parameters will be saved.
use_diff (:obj:`bool`, *optional*, defaults to :obj:`True`):
If set to :obj:`True`, only the difference between the config instance and the default ``PretrainedConfig()``
is serialized to JSON file.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string(use_diff=use_diff))
def to_diff_dict(self) -> Dict[str, Any]:
"""[NODOC]
Removes all attributes from config which correspond to the default config attributes for better readability and
serializes to a Python dictionary.
Returns:
:obj:`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
"""
config_dict = self.to_dict()
# get the default config dict
default_config_dict = BaseDeltaConfig().to_dict()
# get class specific config dict
class_config_dict = self.__class__().to_dict() #if not self.is_composition else {}
serializable_config_dict = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if (
key not in default_config_dict
or key in checked_package_versions
or value != default_config_dict[key]
or (key in class_config_dict and value != class_config_dict[key])
):
serializable_config_dict[key] = value
self.dict_torch_dtype_to_str(serializable_config_dict)
return serializable_config_dict
def update(self, config_dict: Dict[str, Any]):
"""[NODOC]
Updates attributes of this class with attributes from ``config_dict``.
Args:
config_dict (:obj:`Dict[str, Any]`): Dictionary of attributes that should be updated for this class.
"""
for key, value in config_dict.items():
setattr(self, key, value)
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
:obj:`dict`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
if hasattr(self.__class__, "model_type"):
output["model_type"] = self.__class__.model_type
# Transformers version when serializing the model
output["transformers_version"] = transformers_version
output["opendelta_version"] = opendelta_version
self.dict_torch_dtype_to_str(output)
return output
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
"""[NODOC]
Checks whether the passed dictionary has a *torch_dtype* key and if it's not None, converts torch.dtype to a
string of just the type. For example, ``torch.float32`` get converted into *"float32"* string, which can then be
stored in the json format.
"""
if d.get("torch_dtype", None) is not None and not isinstance(d["torch_dtype"], str):
d["torch_dtype"] = str(d["torch_dtype"]).split(".")[1]
def get_configuration_file(
path_or_repo: Union[str, os.PathLike],
revision: Optional[str] = None,
use_auth_token: Optional[Union[bool, str]] = None,
local_files_only: bool = False,
) -> str:
"""
Get the configuration file to use for this version of transformers.
Args:
path_or_repo (`:obj:str` or `:obj:os.PathLike`):
Can be either the id of a repo on huggingface.co or a path to a *directory*.
revision(`:obj:str`, *optional*, defaults to ``"main"``):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so ``revision`` can be any
identifier allowed by git.
use_auth_token (:obj:`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If :obj:`True`, will use the token generated
when running ``transformers-cli login`` (stored in ``~/.huggingface``).
local_files_only (:obj:`bool`, *optional*, defaults to :obj:`False`):
Whether or not to only rely on local files and not to attempt to download any files.
Returns:
:obj:`str`: The configuration file to use.
"""
# Inspect all files from the repo/folder.
all_files = get_list_of_files(
path_or_repo, revision=revision, use_auth_token=use_auth_token, local_files_only=local_files_only
)
configuration_files_map = {}
for file_name in all_files:
search = _re_configuration_file.search(file_name)
if search is not None:
v = search.groups()[0]
configuration_files_map[v] = os.path.split(file_name)[-1]
available_versions = sorted(configuration_files_map.keys())
# Defaults to FULL_CONFIGURATION_FILE and then try to look at some newer versions.
configuration_file = FULL_CONFIGURATION_FILE
# transformers_version_ = version.parse(transformers_version)
for v in available_versions:
# if version.parse(v) <= transformers_version_:
configuration_file = configuration_files_map[v]
# else:
# # No point going further since the versions are sorted.
# break
return configuration_file
if __name__ == "__main__":
myconfig = BaseDeltaConfig.from_pretrained("../ckpts/lora/")
myconfig.save_pretrained("../ckpts/lora.1/")
print(myconfig)