Merge branch 'thunlp:main' into main
This commit is contained in:
commit
0406866c25
|
@ -52,6 +52,7 @@ extensions = [
|
|||
'sphinx.ext.autosummary',
|
||||
'sphinx.ext.doctest',
|
||||
'sphinx.ext.intersphinx',
|
||||
# 'sphinx.ext.mathbase',
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.napoleon',
|
||||
'sphinx.ext.viewcode',
|
||||
|
|
|
@ -0,0 +1,47 @@
|
|||
{
|
||||
"dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"delta_type": "lora",
|
||||
"do_eval": true,
|
||||
"do_test": true,
|
||||
"do_train": true,
|
||||
"eval_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"eval_dataset_name": "cola",
|
||||
"evaluation_strategy": "epoch",
|
||||
"greater_is_better": true,
|
||||
"metric_for_best_model": "eval_matthews_correlation",
|
||||
"learning_rate": 0.0004,
|
||||
"load_best_model_at_end": true,
|
||||
"lora_alpha": 8,
|
||||
"lora_rank": 8,
|
||||
"max_source_length": 512,
|
||||
"model_name": "roberta",
|
||||
"model_name_or_path": "roberta-base",
|
||||
"non_linearity": "gelu_new",
|
||||
"num_train_epochs": 80,
|
||||
"output_dir": "outputs/lora/roberta-base/v2/cola",
|
||||
"per_device_eval_batch_size": 100,
|
||||
"per_device_train_batch_size": 32,
|
||||
"predict_with_generate": true,
|
||||
"save_strategy": "epoch",
|
||||
"save_total_limit": 1,
|
||||
"split_validation_test": true,
|
||||
"task_name": "cola",
|
||||
"test_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"test_dataset_name": "cola",
|
||||
"tokenizer_name": "roberta-base",
|
||||
"unfrozen_modules": [
|
||||
"classifier",
|
||||
"deltas"
|
||||
],
|
||||
"warmup_ratio": 0.06,
|
||||
"warmup_steps": 0,
|
||||
"weight_decay": 0.1,
|
||||
"overwrite_output_dir": true,
|
||||
"push_to_hub": false
|
||||
}
|
|
@ -0,0 +1,46 @@
|
|||
{
|
||||
"dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"delta_lr": 0.0005,
|
||||
"delta_type": "lora",
|
||||
"do_eval": true,
|
||||
"do_test": true,
|
||||
"do_train": true,
|
||||
"eval_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"eval_dataset_name": "mnli",
|
||||
"evaluation_strategy": "epoch",
|
||||
"greater_is_better": true,
|
||||
"metric_for_best_model": "eval_accuracy",
|
||||
"learning_rate": 0.0005,
|
||||
"load_best_model_at_end": true,
|
||||
"lora_alpha": 8,
|
||||
"lora_rank": 8,
|
||||
"max_source_length": 512,
|
||||
"model_name": "roberta",
|
||||
"model_name_or_path": "roberta-base",
|
||||
"non_linearity": "gelu_new",
|
||||
"num_train_epochs": 30,
|
||||
"output_dir": "outputs/lora/roberta-base/v2/mnli",
|
||||
"per_device_eval_batch_size": 100,
|
||||
"per_device_train_batch_size": 16,
|
||||
"save_strategy": "epoch",
|
||||
"save_total_limit": 1,
|
||||
"split_validation_test": true,
|
||||
"task_name": "mnli",
|
||||
"test_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"test_dataset_name": "mnli",
|
||||
"tokenizer_name": "roberta-base",
|
||||
"unfrozen_modules": [
|
||||
"classifier",
|
||||
"deltas"
|
||||
],
|
||||
"warmup_ratio": 0.06,
|
||||
"weight_decay": 0.1,
|
||||
"overwrite_output_dir": true,
|
||||
"push_to_hub": false
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
{
|
||||
"dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"delta_lr": 0.0004,
|
||||
"delta_type": "lora",
|
||||
"do_eval": true,
|
||||
"do_test": true,
|
||||
"do_train": true,
|
||||
"eval_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"eval_dataset_name": "mrpc",
|
||||
"evaluation_strategy": "epoch",
|
||||
"greater_is_better": true,
|
||||
"metric_for_best_model": "eval_accuracy",
|
||||
"learning_rate": 0.0004,
|
||||
"load_best_model_at_end": true,
|
||||
"lora_alpha": 8,
|
||||
"lora_rank": 8,
|
||||
"max_source_length": 512,
|
||||
"model_name": "roberta",
|
||||
"model_name_or_path": "roberta-base",
|
||||
"non_linearity": "gelu_new",
|
||||
"num_train_epochs": 30,
|
||||
"output_dir": "outputs/lora/roberta-base/v2/mrpc",
|
||||
"per_device_eval_batch_size": 100,
|
||||
"per_device_train_batch_size": 16,
|
||||
"predict_with_generate": true,
|
||||
"save_strategy": "epoch",
|
||||
"save_total_limit": 1,
|
||||
"split_validation_test": true,
|
||||
"task_name": "mrpc",
|
||||
"test_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"test_dataset_name": "mrpc",
|
||||
"tokenizer_name": "roberta-base",
|
||||
"unfrozen_modules": [
|
||||
"classifier",
|
||||
"deltas",
|
||||
"layer_norm"
|
||||
],
|
||||
"warmup_ratio": 0.06,
|
||||
"weight_decay": 0.1,
|
||||
"overwrite_output_dir": true,
|
||||
"push_to_hub": false
|
||||
}
|
|
@ -0,0 +1,47 @@
|
|||
{
|
||||
"dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"delta_lr": 0.0004,
|
||||
"delta_type": "lora",
|
||||
"do_eval": true,
|
||||
"do_test": true,
|
||||
"do_train": true,
|
||||
"eval_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"eval_dataset_name": "qnli",
|
||||
"evaluation_strategy": "epoch",
|
||||
"greater_is_better": true,
|
||||
"metric_for_best_model": "eval_accuracy",
|
||||
"learning_rate": 0.0004,
|
||||
"load_best_model_at_end": true,
|
||||
"lora_alpha": 8,
|
||||
"lora_rank": 8,
|
||||
"max_source_length": 512,
|
||||
"model_name": "roberta",
|
||||
"model_name_or_path": "roberta-base",
|
||||
"non_linearity": "gelu_new",
|
||||
"num_train_epochs": 25,
|
||||
"output_dir": "outputs/lora/roberta-base/v2/qnli",
|
||||
"per_device_eval_batch_size": 100,
|
||||
"per_device_train_batch_size": 32,
|
||||
"predict_with_generate": true,
|
||||
"save_strategy": "epoch",
|
||||
"save_total_limit": 1,
|
||||
"split_validation_test": true,
|
||||
"task_name": "qnli",
|
||||
"test_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"test_dataset_name": "qnli",
|
||||
"tokenizer_name": "roberta-base",
|
||||
"unfrozen_modules": [
|
||||
"classifier",
|
||||
"deltas"
|
||||
],
|
||||
"warmup_ratio": 0.06,
|
||||
"weight_decay": 0.1,
|
||||
"overwrite_output_dir": true,
|
||||
"push_to_hub": false
|
||||
}
|
|
@ -0,0 +1,47 @@
|
|||
{
|
||||
"dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"delta_lr": 0.0005,
|
||||
"delta_type": "lora",
|
||||
"do_eval": true,
|
||||
"do_test": true,
|
||||
"do_train": true,
|
||||
"eval_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"eval_dataset_name": "qqp",
|
||||
"evaluation_strategy": "epoch",
|
||||
"greater_is_better": true,
|
||||
"metric_for_best_model": "eval_accuracy",
|
||||
"learning_rate": 0.0005,
|
||||
"load_best_model_at_end": true,
|
||||
"lora_alpha": 8,
|
||||
"lora_rank": 8,
|
||||
"max_source_length": 512,
|
||||
"model_name": "roberta",
|
||||
"model_name_or_path": "roberta-base",
|
||||
"non_linearity": "gelu_new",
|
||||
"num_train_epochs": 25,
|
||||
"output_dir": "outputs/lora/roberta-base/v2/qqp",
|
||||
"per_device_eval_batch_size": 100,
|
||||
"per_device_train_batch_size": 16,
|
||||
"predict_with_generate": true,
|
||||
"save_strategy": "epoch",
|
||||
"save_total_limit": 1,
|
||||
"split_validation_test": true,
|
||||
"task_name": "qqp",
|
||||
"test_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"test_dataset_name": "qqp",
|
||||
"tokenizer_name": "roberta-base",
|
||||
"unfrozen_modules": [
|
||||
"classifier",
|
||||
"deltas"
|
||||
],
|
||||
"warmup_ratio": 0.06,
|
||||
"weight_decay": 0.1,
|
||||
"overwrite_output_dir": true,
|
||||
"push_to_hub": false
|
||||
}
|
|
@ -0,0 +1,46 @@
|
|||
{
|
||||
"dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"delta_type": "lora",
|
||||
"do_eval": true,
|
||||
"do_test": true,
|
||||
"do_train": true,
|
||||
"eval_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"eval_dataset_name": "rte",
|
||||
"evaluation_strategy": "epoch",
|
||||
"greater_is_better": true,
|
||||
"metric_for_best_model": "eval_accuracy",
|
||||
"learning_rate": 0.0005,
|
||||
"load_best_model_at_end": true,
|
||||
"lora_alpha": 8,
|
||||
"lora_rank": 8,
|
||||
"max_source_length": 512,
|
||||
"model_name": "roberta",
|
||||
"model_name_or_path": "roberta-base",
|
||||
"non_linearity": "gelu_new",
|
||||
"num_train_epochs": 80,
|
||||
"output_dir": "outputs/lora/roberta-base/rte",
|
||||
"per_device_eval_batch_size": 100,
|
||||
"per_device_train_batch_size": 32,
|
||||
"predict_with_generate": true,
|
||||
"save_strategy": "epoch",
|
||||
"save_total_limit": 1,
|
||||
"split_validation_test": true,
|
||||
"task_name": "rte",
|
||||
"test_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"test_dataset_name": "rte",
|
||||
"tokenizer_name": "roberta-base",
|
||||
"unfrozen_modules": [
|
||||
"classifier",
|
||||
"deltas"
|
||||
],
|
||||
"warmup_ratio": 0.06,
|
||||
"weight_decay": 0.1,
|
||||
"overwrite_output_dir": true,
|
||||
"push_to_hub": false
|
||||
}
|
|
@ -0,0 +1,47 @@
|
|||
{
|
||||
"dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"delta_lr": 0.0005,
|
||||
"delta_type": "lora",
|
||||
"do_eval": true,
|
||||
"do_test": true,
|
||||
"do_train": true,
|
||||
"eval_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"eval_dataset_name": "sst2",
|
||||
"evaluation_strategy": "epoch",
|
||||
"metric_for_best_model": "eval_accuracy",
|
||||
"greater_is_better": true,
|
||||
"learning_rate": 0.0005,
|
||||
"load_best_model_at_end": true,
|
||||
"lora_alpha": 8,
|
||||
"lora_rank": 8,
|
||||
"max_source_length": 512,
|
||||
"model_name": "roberta",
|
||||
"model_name_or_path": "roberta-base",
|
||||
"non_linearity": "gelu_new",
|
||||
"num_train_epochs": 60,
|
||||
"output_dir": "outputs/lora/roberta-base/v2/sst2",
|
||||
"per_device_eval_batch_size": 100,
|
||||
"per_device_train_batch_size": 16,
|
||||
"predict_with_generate": true,
|
||||
"save_strategy": "epoch",
|
||||
"save_total_limit": 1,
|
||||
"split_validation_test": true,
|
||||
"task_name": "sst2",
|
||||
"test_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"test_dataset_name": "sst2",
|
||||
"tokenizer_name": "roberta-base",
|
||||
"unfrozen_modules": [
|
||||
"classifier",
|
||||
"deltas"
|
||||
],
|
||||
"warmup_ratio": 0.06,
|
||||
"weight_decay": 0.1,
|
||||
"overwrite_output_dir": true,
|
||||
"push_to_hub": false
|
||||
}
|
|
@ -0,0 +1,47 @@
|
|||
{
|
||||
"dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"delta_lr": 0.0004,
|
||||
"delta_type": "lora",
|
||||
"do_eval": true,
|
||||
"do_test": true,
|
||||
"do_train": true,
|
||||
"eval_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"eval_dataset_name": "stsb",
|
||||
"evaluation_strategy": "epoch",
|
||||
"greater_is_better": true,
|
||||
"metric_for_best_model": "eval_pearson",
|
||||
"learning_rate": 0.0004,
|
||||
"load_best_model_at_end": true,
|
||||
"lora_alpha": 8,
|
||||
"lora_rank": 8,
|
||||
"max_source_length": 512,
|
||||
"model_name": "roberta",
|
||||
"model_name_or_path": "roberta-base",
|
||||
"non_linearity": "gelu_new",
|
||||
"num_train_epochs": 40,
|
||||
"output_dir": "outputs/lora/roberta-base/v2/stsb",
|
||||
"per_device_eval_batch_size": 100,
|
||||
"per_device_train_batch_size": 16,
|
||||
"predict_with_generate": true,
|
||||
"save_strategy": "epoch",
|
||||
"save_total_limit": 1,
|
||||
"split_validation_test": true,
|
||||
"task_name": "stsb",
|
||||
"test_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"test_dataset_name": "stsb",
|
||||
"tokenizer_name": "roberta-base",
|
||||
"unfrozen_modules": [
|
||||
"classifier",
|
||||
"deltas"
|
||||
],
|
||||
"warmup_ratio": 0.06,
|
||||
"weight_decay": 0.1,
|
||||
"overwrite_output_dir": true,
|
||||
"push_to_hub": false
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
{
|
||||
"dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"delta_lr": 0.0005,
|
||||
"delta_type": "lora",
|
||||
"do_eval": true,
|
||||
"do_test": true,
|
||||
"do_train": true,
|
||||
"eval_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"eval_dataset_name": "wnli",
|
||||
"evaluation_strategy": "epoch",
|
||||
"greater_is_better": true,
|
||||
"metric_for_best_model": "eval_pearson",
|
||||
"learning_rate": 0.0003,
|
||||
"load_best_model_at_end": true,
|
||||
"lora_alpha": 8,
|
||||
"lora_rank": 8,
|
||||
"max_source_length": 512,
|
||||
"model_name": "roberta",
|
||||
"model_name_or_path": "roberta-base",
|
||||
"non_linearity": "gelu_new",
|
||||
"num_train_epochs": 30,
|
||||
"output_dir": "outputs/lora/roberta-base/v2/wnli",
|
||||
"per_device_eval_batch_size": 100,
|
||||
"per_device_train_batch_size": 32,
|
||||
"predict_with_generate": true,
|
||||
"save_strategy": "epoch",
|
||||
"save_total_limit": 1,
|
||||
"split_validation_test": true,
|
||||
"task_name": "wnli",
|
||||
"test_dataset_config_name": [
|
||||
"en"
|
||||
],
|
||||
"test_dataset_name": "wnli",
|
||||
"tokenizer_name": "roberta-base",
|
||||
"unfrozen_modules": [
|
||||
"classifier",
|
||||
"deltas"
|
||||
],
|
||||
"warmup_ratio": 0.06,
|
||||
"warmup_steps": 0,
|
||||
"weight_decay": 0.1,
|
||||
"overwrite_output_dir": true,
|
||||
"push_to_hub": false
|
||||
}
|
|
@ -603,6 +603,7 @@ def main():
|
|||
item = label_list[item]
|
||||
writer.write(f"{index}\t{item}\n")
|
||||
|
||||
# from IPython import embed; embed()
|
||||
|
||||
# kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
|
||||
# if data_args.task_name is not None:
|
||||
|
|
|
@ -9,6 +9,7 @@ Visualization(model).structure_graph()
|
|||
from opendelta import LoraModel
|
||||
import re
|
||||
delta_model = LoraModel(backbone_model=model, modified_modules=['[r](\d)+\.output.dense', 'attention.output.dense'])
|
||||
# delta_model = LoraModel(backbone_model=model, modified_modules=['[r][0-5]\.output.dense'])
|
||||
print("after modify")
|
||||
delta_model.log()
|
||||
# This will visualize the backbone after modification and other information.
|
|
@ -479,7 +479,7 @@ class DeltaBase(nn.Module, SaveLoadMixin):
|
|||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def insert_sequential_module(self, module, delta_module=None, name='delta', strict=False, _delta_info=None):
|
||||
def insert_sequential_module(self, module, delta_module=None, delta_name='delta', strict=False, _delta_info=None):
|
||||
r"""insert a module (previous not exists in the code base) before/after a module. Specifically, it modifies the forward
|
||||
function of the original module to firstly pass the arguments into the new module's forward function and then pass
|
||||
it into the original ones. The new module can also be inserted after the original module with similar mechanism.
|
||||
|
@ -519,14 +519,14 @@ class DeltaBase(nn.Module, SaveLoadMixin):
|
|||
|
||||
_delta_info = {"method": "insert_sequential",
|
||||
"delta_module": delta_module,
|
||||
"delta_name": name,
|
||||
"delta_name": delta_name,
|
||||
"delta_belong": self,
|
||||
"state": "on"}
|
||||
self._register_delta_infos(parent_module=module,
|
||||
_delta_info = _delta_info)
|
||||
else:
|
||||
delta_module = _delta_info["delta_module"]
|
||||
name = _delta_info["delta_name"]
|
||||
delta_name = _delta_info["delta_name"]
|
||||
|
||||
setattr(module, _delta_info['delta_name'], _delta_info["delta_module"])
|
||||
|
||||
|
@ -537,19 +537,58 @@ class DeltaBase(nn.Module, SaveLoadMixin):
|
|||
module._replicate_for_data_parallel = new_replicate_for_data_parallel.__get__(module, type(module))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def insert_parrellel_module(self, module, pre_caller=None, post_caller=None, delta_module=None, name='delta'):
|
||||
def insert_parallel_module(self, module, delta_module=None, delta_name='delta', strict=False, _delta_info=None):
|
||||
"""insert a module (previous not exists in the code base) across a module. Specifically, it modifies the forward
|
||||
function of the original module to firstly pass the arguments into the delta model's forward function and set
|
||||
aside the calculation result. Then combine it with the calculation result output from the backbone module.
|
||||
|
||||
When implementing the new module , researchers should be aware of the arguments and keywards of the original module's forward function.
|
||||
|
||||
# TODO: currently not in use.
|
||||
Args:
|
||||
module: (:obj:`nn.Module`): The (sub)module to inserted a delta module.
|
||||
delta_module: (:obj:`DeltaBase`): The delta module to be inserted.
|
||||
name: (:obj:`str`, *optional*): The name of the delta in the backbone module.
|
||||
strict: (:obj:`bool`, *optional*): Whether to prohibit modify a modified module.
|
||||
_delta_info (:obj:`Dict`, *optional*): Used in attach(), reattach a delta module to backbone. The info of
|
||||
original delta is passed through ``_delta_info``.
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def _caller(_org_func, org_module, delta_name, *args, **kwargs):
|
||||
args = args[1:] # the first argument here is ``self``
|
||||
delta_module = getattr(org_module, delta_name)
|
||||
ret_1 = _org_func(*args, **kwargs)
|
||||
ret_2 = delta_module.forward(*args, **kwargs)
|
||||
return ret_1 + ret_2
|
||||
|
||||
if strict:
|
||||
if hasattr(module.forward, "__wrapped__"):
|
||||
raise RuntimeWarning("The forward function might have been wrapped by a decorator, is it intended?")
|
||||
|
||||
# record info for plug and unplug and nested wrap
|
||||
if _delta_info is None:
|
||||
if delta_module is None:
|
||||
raise RuntimeError("delta module can't be none to ensure successful replicate of the parent module.")
|
||||
|
||||
_delta_info = {"method": "insert_parallel",
|
||||
"delta_module": delta_module,
|
||||
"delta_name": delta_name,
|
||||
"delta_belong": self,
|
||||
"state": "on"}
|
||||
self._register_delta_infos(parent_module=module,
|
||||
_delta_info = _delta_info)
|
||||
else:
|
||||
delta_module = _delta_info["delta_module"]
|
||||
delta_name = _delta_info["delta_name"]
|
||||
|
||||
setattr(module, _delta_info['delta_name'], _delta_info["delta_module"])
|
||||
|
||||
new_forward = decorate(module.forward, _caller, extras=(module, _delta_info['delta_name']), kwsyntax=True) # decorator.decorate helps preserving the functions metadata (signature, etc.).
|
||||
module.forward = new_forward.__get__(module, type(module)) # func.__get__(object, type(object)) register a function as an object's method
|
||||
# for DataParallel's copy behavior. Experimental:
|
||||
# may have bugs when module.forward is nestedly wrapped.
|
||||
module._replicate_for_data_parallel = new_replicate_for_data_parallel.__get__(module, type(module))
|
||||
|
||||
|
||||
def set_active_state_dict(self, module: nn.Module):
|
||||
r"""modify the state_dict function of the model (by default, the backbone model) to return only the tunable part.
|
||||
|
|
|
@ -230,7 +230,7 @@ class AdapterModel(DeltaBase):
|
|||
def update_module(self, module: nn.Module, key: str):
|
||||
_, _, ref = self.find_module(module, key)
|
||||
adapterlayer = self.new_module_like(ref)
|
||||
self.insert_sequential_module(ref, delta_module=adapterlayer, name="adapter")
|
||||
self.insert_sequential_module(ref, delta_module=adapterlayer, delta_name="adapter")
|
||||
|
||||
def new_module_like(self, module):
|
||||
module_device = get_device(module)
|
||||
|
|
|
@ -179,7 +179,7 @@ class BitFitModel(DeltaBase):
|
|||
|
||||
def add_bias_to_others(self, c):
|
||||
new_bias = BiasLayer()
|
||||
self.insert_sequential_module(c, delta_module=new_bias, name="bitfit") # name shouldn't be `bias` here, since
|
||||
self.insert_sequential_module(c, delta_module=new_bias, delta_name="bitfit") # name shouldn't be `bias` here, since
|
||||
# the name `bias` is reserved for some module such as roberta's LayerNorm.
|
||||
self.delta_modules.append(new_bias)
|
||||
|
||||
|
|
|
@ -277,7 +277,7 @@ class CompacterModel(DeltaBase):
|
|||
adapterlayer = self.new_module_like(ref)
|
||||
self.insert_sequential_module(ref,
|
||||
delta_module=adapterlayer,
|
||||
name="compactor")
|
||||
delta_name="compactor")
|
||||
|
||||
def new_module_like(self, module):
|
||||
module_device = get_device(module)
|
||||
|
|
|
@ -1,3 +1,4 @@
|
|||
from turtle import forward
|
||||
from typing import Optional, Union
|
||||
|
||||
from opendelta.utils.signature import get_arg_names, get_arg_names_inside_func
|
||||
|
@ -7,6 +8,42 @@ from transformers.models.t5 import T5ForConditionalGeneration
|
|||
import loralib as lora
|
||||
import torch.nn as nn
|
||||
from opendelta import BaseDeltaConfig
|
||||
import math
|
||||
|
||||
class LowRankLinear(nn.Module):
|
||||
# ------------------------------------------------------------------------------------------
|
||||
# Copyright (c) Microsoft Corporation. All rights reserved.
|
||||
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
|
||||
# ------------------------------------------------------------------------------------------
|
||||
# copy from loralib and do some refactor
|
||||
def __init__(self,
|
||||
in_features,
|
||||
out_features,
|
||||
weight,
|
||||
r=8,
|
||||
lora_alpha=16,
|
||||
lora_dropout=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.r = r
|
||||
self.lora_alpha = lora_alpha
|
||||
self.lora_dropout = lora_dropout
|
||||
self.lin = nn.Linear(in_features, out_features) #
|
||||
if lora_dropout > 0.:
|
||||
self.lora_dropout = nn.Dropout(p=lora_dropout)
|
||||
else:
|
||||
self.lora_dropout = lambda x: x
|
||||
if r > 0:
|
||||
self.lora_A = nn.Parameter(weight.new_zeros((r, in_features)))
|
||||
self.lora_B = nn.Parameter(weight.new_zeros((out_features, r)))
|
||||
self.scaling = self.lora_alpha / self.r
|
||||
self.lin.reset_parameters() #
|
||||
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
||||
nn.init.zeros_(self.lora_B)
|
||||
|
||||
def forward(self, x):
|
||||
return (self.lora_dropout(x) @ self.lora_A.T @ self.lora_B.T) * self.scaling
|
||||
|
||||
|
||||
class LoraConfig(BaseDeltaConfig):
|
||||
r"""
|
||||
|
@ -27,11 +64,15 @@ class LoraConfig(BaseDeltaConfig):
|
|||
setattr(self, arg_name, locals()[arg_name])
|
||||
|
||||
|
||||
|
||||
class LoraModel(DeltaBase):
|
||||
r""" The implementation of `LoRA: Low-Rank Adaptation of Large Language Models <https://arxiv.org/abs/2106.09685>`_ .
|
||||
Thanks for their `loralib <https://github.com/microsoft/LoRA/tree/main/loralib>`_, we use loralib.linear
|
||||
to replace the linear layer of the backbone model.
|
||||
Thanks for their `loralib <https://github.com/microsoft/LoRA/tree/main/loralib>`_.
|
||||
|
||||
.. note::
|
||||
In our implementation, we did not use loralib.linear to replace the linear layer of the backbone model.
|
||||
Instead, we insert a parallel module into the backbone.
|
||||
In other words, we treat :math:`(W + A^TB) X` as :math:`WX+ A^TBX`, and insert the :math:`A^TBX` as a parallel insertion module.
|
||||
If you want to use the original implementation, please refer to `lora_old.py`
|
||||
|
||||
class attributes:
|
||||
- default_modified_modules = ['attn.q', 'attn.v'] According to the paper, they modify q and v matrix in the
|
||||
|
@ -89,11 +130,10 @@ class LoraModel(DeltaBase):
|
|||
)
|
||||
|
||||
|
||||
|
||||
def update_module(self, module: nn.Module, key: str):
|
||||
parent_ref, child_name, child_ref = self.find_module(module, key)
|
||||
new_module = self.new_module_like(child_module=child_ref)
|
||||
self.replace_module(parent_ref, child_name, child_ref, new_module, delta_name="lora")
|
||||
parallel_module = self.new_module_like(child_module=child_ref)
|
||||
self.insert_parallel_module(child_ref, delta_module=parallel_module, delta_name="lora")
|
||||
|
||||
def _pseudo_data_to_instantiate(self, module):
|
||||
# no need to pass pseudo input, so overwrite it
|
||||
|
@ -102,26 +142,13 @@ class LoraModel(DeltaBase):
|
|||
def new_module_like(self, child_module):
|
||||
if isinstance(child_module, nn.Linear):
|
||||
in_features, out_features = child_module.in_features, child_module.out_features
|
||||
new_module = lora.Linear(in_features=in_features,
|
||||
out_features=out_features,
|
||||
new_module = LowRankLinear(in_features = in_features,
|
||||
out_features = out_features,
|
||||
weight = child_module.weight,
|
||||
r=self.lora_r,
|
||||
lora_alpha=self.lora_alpha,
|
||||
lora_dropout=self.lora_dropout)
|
||||
new_module.weight = child_module.weight
|
||||
new_module.bias = child_module.bias # if bias is None, also copy
|
||||
self.delta_modules.append(new_module)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return new_module
|
||||
|
||||
|
||||
|
||||
def mark_as_delta(self, module: nn.Module = None):
|
||||
if module is None:
|
||||
module=self
|
||||
for n, p in module.named_parameters():
|
||||
param_name = n.split(".")[-1]
|
||||
if "lora_A" in param_name or "lora_B" in param_name: # only lora_A, lora_B is the delta parameter.
|
||||
setattr(p, "_is_delta", True)
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,126 @@
|
|||
from typing import Optional, Union
|
||||
|
||||
from opendelta.utils.signature import get_arg_names, get_arg_names_inside_func
|
||||
from opendelta.utils.name_based_addressing import *
|
||||
from opendelta.basemodel import DeltaBase
|
||||
from transformers.models.t5 import T5ForConditionalGeneration
|
||||
import loralib as lora
|
||||
import torch.nn as nn
|
||||
from opendelta import BaseDeltaConfig
|
||||
|
||||
class LoraConfig(BaseDeltaConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a :py:class:`~LoraModel`
|
||||
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
lora_r=8,
|
||||
lora_alpha=16,
|
||||
lora_dropout=0.0,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(**kwargs)
|
||||
arg_names = get_arg_names_inside_func(self.__init__)
|
||||
for arg_name in arg_names:
|
||||
if not hasattr(self, arg_name): # the arg has not been registered in parent config
|
||||
setattr(self, arg_name, locals()[arg_name])
|
||||
|
||||
|
||||
class LoraModel(DeltaBase):
|
||||
r""" The implementation of `LoRA: Low-Rank Adaptation of Large Language Models <https://arxiv.org/abs/2106.09685>`_ .
|
||||
Thanks for their `loralib <https://github.com/microsoft/LoRA/tree/main/loralib>`_, we use loralib.linear
|
||||
to replace the linear layer of the backbone model.
|
||||
|
||||
class attributes:
|
||||
- default_modified_modules = ['attn.q', 'attn.v'] According to the paper, they modify q and v matrix in the
|
||||
attention layer. However, other linears can also be modified, and may lead to better performance.
|
||||
|
||||
.. note::
|
||||
modified_modules should point to linear layer. We currently don't support broadcast to all linears in
|
||||
a module's child modules.
|
||||
|
||||
- delta_type = "lora"
|
||||
|
||||
|
||||
Args:
|
||||
backbone_model (:obj:`transformers.PretrainedModels`): The backbone model to be modified.
|
||||
lora_r (:obj:`int`, *optional*): the rank of the lora parameters. The smaller lora_r is , the fewer parameters lora has.
|
||||
lora_alpha (:obj:`bool`, *optional*): A hyper-parameter to control the init scale of loralib.linear .
|
||||
lora_dropout (:obj:`bool`, *optional*): The dropout rate in lora.linear.
|
||||
modified_modules (:obj:`List[str]`): For prefix tuning, the it must refer to an attention layer (Currently, only
|
||||
the implemented ones)
|
||||
unfrozen_modules (:obj:`List[str]`, *optional*, default to :obj:`None`): The modules that should be unfrozen
|
||||
together with the prefix parameters.
|
||||
common_structure (:obj:`bool`): whether using name-based addressing witha common structure mapping.
|
||||
|
||||
"""
|
||||
|
||||
config_class = LoraConfig
|
||||
delta_type = "lora"
|
||||
default_modified_modules = ['attn.q', 'attn.v']
|
||||
def __init__(self,
|
||||
backbone_model: nn.Module,
|
||||
lora_r=8,
|
||||
lora_alpha=16,
|
||||
lora_dropout=0.0,
|
||||
modified_modules: Optional[bool] = None,
|
||||
unfrozen_modules: Optional[bool] = None,
|
||||
common_structure: Optional[bool] = None,
|
||||
interactive_modify: Optional[Union[bool, int]] = False,
|
||||
):
|
||||
DeltaBase.__init__(self,
|
||||
backbone_model,
|
||||
modified_modules=modified_modules,
|
||||
unfrozen_modules=unfrozen_modules,
|
||||
common_structure=common_structure,
|
||||
interactive_modify=interactive_modify,
|
||||
)
|
||||
arg_names = get_arg_names_inside_func(self.__init__)
|
||||
for arg_name in arg_names:
|
||||
if not hasattr(self, arg_name): # not registered in parent class
|
||||
setattr(self, arg_name, locals()[arg_name])
|
||||
|
||||
self.delta_modules = nn.ModuleList()
|
||||
|
||||
self.add_all_delta_to_backbone(self.backbone_model,
|
||||
self.modified_modules,
|
||||
)
|
||||
|
||||
|
||||
|
||||
def update_module(self, module: nn.Module, key: str):
|
||||
parent_ref, child_name, child_ref = self.find_module(module, key)
|
||||
new_module = self.new_module_like(child_module=child_ref)
|
||||
self.replace_module(parent_ref, child_name, child_ref, new_module, delta_name="lora")
|
||||
|
||||
def _pseudo_data_to_instantiate(self, module):
|
||||
# no need to pass pseudo input, so overwrite it
|
||||
pass
|
||||
|
||||
def new_module_like(self, child_module):
|
||||
if isinstance(child_module, nn.Linear):
|
||||
in_features, out_features = child_module.in_features, child_module.out_features
|
||||
new_module = lora.Linear(in_features=in_features,
|
||||
out_features=out_features,
|
||||
r=self.lora_r,
|
||||
lora_alpha=self.lora_alpha,
|
||||
lora_dropout=self.lora_dropout)
|
||||
new_module.weight = child_module.weight
|
||||
new_module.bias = child_module.bias # if bias is None, also copy
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return new_module
|
||||
|
||||
|
||||
|
||||
def mark_as_delta(self, module: nn.Module = None):
|
||||
if module is None:
|
||||
module=self
|
||||
for n, p in module.named_parameters():
|
||||
param_name = n.split(".")[-1]
|
||||
if "lora_A" in param_name or "lora_B" in param_name: # only lora_A, lora_B is the delta parameter.
|
||||
setattr(p, "_is_delta", True)
|
||||
|
||||
|
||||
|
|
@ -194,7 +194,7 @@ class LowRankAdapterModel(DeltaBase):
|
|||
def update_module(self, module: nn.Module, key: str):
|
||||
_, _, ref = self.find_module(module, key)
|
||||
adapterlayer = self.new_module_like(ref)
|
||||
self.insert_sequential_module(ref, delta_module=adapterlayer, name="low_rank_adapter")
|
||||
self.insert_sequential_module(ref, delta_module=adapterlayer, delta_name="low_rank_adapter")
|
||||
|
||||
def new_module_like(self, module):
|
||||
module_device = get_device(module)
|
||||
|
|
|
@ -512,7 +512,7 @@ class PrefixModel(DeltaBase):
|
|||
module_list=self.delta_modules)
|
||||
self.delta_modules = None
|
||||
self.reparams = reparams
|
||||
self.insert_sequential_module(first_modified_module, delta_module=reparams, name="reparams", strict=False)
|
||||
self.insert_sequential_module(first_modified_module, delta_module=reparams, delta_name="reparams", strict=False)
|
||||
self.mark_as_delta()
|
||||
return module
|
||||
|
||||
|
@ -522,7 +522,7 @@ class PrefixModel(DeltaBase):
|
|||
_, _, ref = self.find_module(module, key)
|
||||
|
||||
prefixlayer, ref = self.new_module_like(ref)
|
||||
self.insert_sequential_module(ref, delta_module=prefixlayer, name="prefix")
|
||||
self.insert_sequential_module(ref, delta_module=prefixlayer, delta_name="prefix")
|
||||
self.delta_modules.append(prefixlayer)
|
||||
|
||||
def new_module_like(self, module):
|
||||
|
|
|
@ -193,11 +193,11 @@ class SoftPromptModel(DeltaBase):
|
|||
soft_prompt_layer = self.new_module_like(self.raw_embedding)
|
||||
self.insert_sequential_module(self.backbone_model.get_encoder() if self.backbone_model.config.is_encoder_decoder else self.backbone_model,
|
||||
delta_module=soft_prompt_layer,
|
||||
name="soft_prompt_layer" )
|
||||
delta_name="soft_prompt_layer" )
|
||||
|
||||
def new_module_like(self, module):
|
||||
module_device = get_device(module)
|
||||
soft_prompt_layer = SoftPromptLayer(
|
||||
soft_prompt_layer = SoftPromptLayer(
|
||||
soft_token_num = self.soft_token_num,
|
||||
raw_embedding = self.raw_embedding,
|
||||
token_init = self.token_init,
|
||||
|
|
|
@ -8,7 +8,7 @@ def new_replicate_for_data_parallel(self):
|
|||
r""" self is the parent module.
|
||||
"""
|
||||
# rewrite the replicate in DataParallel.
|
||||
def _caller(_org_func, org_module, delta_name, *args, **kwargs):
|
||||
def _sequential_caller(_org_func, org_module, delta_name, *args, **kwargs):
|
||||
args = args[1:] # the first argument here is ``self``
|
||||
delta_module = getattr(org_module, delta_name)
|
||||
if hasattr(delta_module, "pre_forward"):
|
||||
|
@ -17,6 +17,13 @@ def new_replicate_for_data_parallel(self):
|
|||
if hasattr(delta_module, "post_forward"):
|
||||
ret = delta_module.post_forward(ret)
|
||||
return ret
|
||||
|
||||
def _parallel_caller(_org_func, org_module, delta_name, *args, **kwargs):
|
||||
args = args[1:] # the first argument here is ``self``
|
||||
delta_module = getattr(org_module, delta_name)
|
||||
ret_1 = _org_func(*args, **kwargs)
|
||||
ret_2 = delta_module.forward(*args, **kwargs)
|
||||
return ret_1 + ret_2
|
||||
replica = self.__new__(type(self))
|
||||
org_forward = replica.forward
|
||||
replica.__dict__ = self.__dict__.copy()
|
||||
|
@ -25,8 +32,13 @@ def new_replicate_for_data_parallel(self):
|
|||
|
||||
|
||||
for _delta_info in self._delta_infos:
|
||||
if _delta_info['method'] == "insert_sequential" and _delta_info['state'] == "on":
|
||||
new_forward = decorate(replica.forward, _caller, extras=(replica, _delta_info['delta_name']), kwsyntax=True)
|
||||
if _delta_info['state'] == 'on':
|
||||
if _delta_info['method'] == "insert_sequential":
|
||||
new_forward = decorate(replica.forward, _sequential_caller, extras=(replica, _delta_info['delta_name']), kwsyntax=True)
|
||||
elif _delta_info['method'] == "insert_parallel":
|
||||
new_forward = decorate(replica.forward, _parallel_caller, extras=(replica, _delta_info['delta_name']), kwsyntax=True)
|
||||
else:
|
||||
raise NotImplementedError(f"data_parallel for _delta_info['method']=='{_delta_info['method']}' is not supported")
|
||||
replica.__dict__['forward'] = new_forward.__get__(replica, type(replica))
|
||||
|
||||
# replicas do not have parameters themselves, the replicas reference the original
|
||||
|
|
Loading…
Reference in New Issue