This commit is contained in:
Achazwl 2022-05-02 15:54:55 +08:00
parent b3935927dc
commit 351aa3a40d
5 changed files with 175 additions and 2 deletions

View File

@ -21,6 +21,7 @@ from .delta_models.adapter import AdapterModel
from .delta_models.prefix import PrefixModel
from .delta_models.soft_prompt import SoftPromptModel
from .delta_models.low_rank_adapter import LowRankAdapterModel
from .delta_models.split import SplitModel
from .utils.visualization import Visualization

View File

@ -5,7 +5,6 @@ from opendelta.utils.signature import get_arg_names, get_arg_names_inside_func
from opendelta.utils.name_based_addressing import *
from opendelta.basemodel import DeltaBase
from transformers.models.t5 import T5ForConditionalGeneration
import loralib as lora
import torch.nn as nn
from opendelta import BaseDeltaConfig
import math

View File

@ -1,4 +1,3 @@
from examples_prompt.metrics.metrics import exact_match
from opendelta.utils.signature import get_arg_names, get_arg_names_inside_func
from opendelta.utils.name_based_addressing import *
from opendelta.utils.cuda import get_device

View File

@ -0,0 +1,159 @@
from functools import partial
from random import random
from typing import Optional, Union
from cv2 import accumulate
from opendelta.utils.signature import get_arg_names_inside_func
from opendelta.utils.name_based_addressing import *
from opendelta.utils.cuda import get_device
from opendelta.basemodel import DeltaBase
import loralib as lora
import torch.nn as nn
import torch
import math
from opendelta.delta_models.layers.activations import Activations
import inspect
from opendelta import BaseDeltaConfig
import opendelta.utils.logging as logging
import numpy as np
from opendelta import global_setting
logger = logging.get_logger(__name__)
from itertools import accumulate
from opendelta.delta_models.adapter import AdapterLayer
class SplitLayer(nn.Module):
r"""A layer of splitting module.
"""
def __init__(self, batch_size:list):
super().__init__()
self.batch_size = list(accumulate(batch_size))
self.modulelist = nn.ModuleList()
self.pseudo_inited = False
def append(self, module):
self.modulelist.append(module)
def post_forward(self, output):
if isinstance(output, tuple):
hiddens = output[0]
elif isinstance(output, torch.Tensor):
hiddens = output
else:
raise TypeError
if hiddens.shape[0] != self.batch_size[-1]:
if self.pseudo_inited:
raise RuntimeError('The batch size of the input is not consistent with split config.')
self.pseudo_inited = True
outputs = None
for i in range(len(self.batch_size)):
outputs = self.modulelist[i].post_forward(
hiddens
)
merge_output = outputs
else:
split_outputs = [None]*len(self.batch_size)
for i in range(len(self.batch_size)):
split_outputs[i] = self.modulelist[i].post_forward(
hiddens[(0 if i==0 else self.batch_size[i-1]):self.batch_size[i]]
)
merge_output = torch.cat(split_outputs)
if isinstance(output, tuple):
output = (merge_output,) + output[1:]
elif isinstance(output, torch.Tensor):
output = merge_output
else:
raise TypeError
return output
class SplitConfig(BaseDeltaConfig):
r"""
This is the configuration class to store the configuration of a :py:class:`~SplitModel`
"""
def __init__(
self,
batch_size: list = [8, 1, 7],
**kwargs
):
super().__init__(**kwargs)
arg_names = get_arg_names_inside_func(self.__init__)
for arg_name in arg_names:
if not hasattr(self, arg_name): # the arg has not been registered in parent config
setattr(self, arg_name, locals()[arg_name])
class SplitModel(DeltaBase):
r""" The implementation of Adapter(`Parameter-Efficient Transfer Learning for NLP <https://arxiv.org/abs/1902.00751>`_ ) .
Add adapter to the designated ``modified_modules``. In sequential paradigm, The modules' output is then passed into the adapter's
post_forward.
.. note::
We **assume** the output of the modified module is the hidden state or a tuple where hidden state is the
first element. This is true for most PLMs. However, we admit that currently it's not rigorous, We will improve
it in the next version. Currently, if you encount an error here for you backbone, you can modify the code to
get the hidden state.
class attributes:
- default_modified_modules = ["attn", "ff"] According to the Adapter paper, we add adapter to the attention layer
and feed forward layer.
- delta_type = "adapter"
Args:
backbone_model (:obj:`transformers.PretrainedModels`): The backbone model to be modified.
bottleneck_dim (:obj:`int`): The dimension of the adapter's bottleneck.
non_linearity (:obj:`str`): The non linearity of the adapter.
sequential (:obj:`str`): Whether insert the adapter in a sequential manner, as opposed to a parallel manner.
See `Towards a Unified View of Parameter-Efficient Transfer Learning <https://arxiv.org/abs/2110.04366>`_
for detail.
modified_modules (:obj:`List[str]`): For prefix tuning, the it must refer to an attention layer (Currently, only
the implemented ones)
unfrozen_modules (:obj:`List[str]`, *optional*, default to :obj:`None`): The modules that should be unfrozen
together with the prefix parameters.
common_structure (:obj:`bool`): whether using name-based addressing with a common structure mapping.
"""
config_class = SplitConfig
delta_type = "adapter"
default_modified_modules = ["attn", "ff"]
def __init__(self,
backbone_model: nn.Module,
batch_size: list = [8, 1, 7],
modified_modules: Optional[List[str]] = None,
exclude_modules: Optional[List[str]] = None,
unfrozen_modules: Optional[List[str]] = None,
common_structure: Optional[bool] = None,
interactive_modify: Optional[Union[bool, int]] = False,
):
DeltaBase.__init__(self,
backbone_model,
modified_modules=modified_modules,
exclude_modules=exclude_modules,
unfrozen_modules=unfrozen_modules,
common_structure=common_structure,
interactive_modify=interactive_modify,
)
arg_names = get_arg_names_inside_func(self.__init__)
for arg_name in arg_names:
if not hasattr(self, arg_name): # not registered in parent class
setattr(self, arg_name, locals()[arg_name])
self.delta_modules = nn.ModuleList()
self.add_all_delta_to_backbone(self.backbone_model,
self.modified_modules,
)
def update_module(self, module: nn.Module, key: str):
_, _, ref = self.find_module(module, key)
splitlayer = SplitLayer(self.batch_size)
for b in self.batch_size:
splitlayer.append(self.new_module_like(ref))
self.insert_sequential_module(ref, delta_module=splitlayer, delta_name="split")
def new_module_like(self, module):
module_device = get_device(module)
adapterlayer = AdapterLayer()
self.delta_modules.append(adapterlayer)
return adapterlayer

15
test.py Normal file
View File

@ -0,0 +1,15 @@
from transformers import BertModel
model = BertModel.from_pretrained("bert-base-cased")
from opendelta import Visualization
Visualization(model).structure_graph()
from opendelta import SplitModel
delta_model = SplitModel(model, batch_size=[1]*16, modified_modules=['output.dense'])
delta_model.log() # This will visualize the backbone after modification and other information.
import torch
x = torch.randint(0, 10, (16, 128)).cuda()
import time
model = model.cuda()
st_time = time.time()
for t in range(10):
y = model(x)
print(time.time() - st_time)