Merge branch 'main' into main

This commit is contained in:
DingDing 2022-03-21 21:36:12 +08:00 committed by GitHub
commit a14c19e8dc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
713 changed files with 503446 additions and 57 deletions

13
.gitignore vendored
View File

@ -19,7 +19,20 @@ log.txt
**/DeltaHub/
*beans/
**/examples/*/configs/
!examples/*/configs/config_gen.py
**/jupyter_notebook_examples/
!examples/jupyter_notebook_examples/*.py
!**/examples/*/configs/config_gen.py
**/outputs_search/**/*.bin
**/outputs_search/**/*.pt
*.db
**/nohup.out
**/examples/examples_bmtrain/BigModels/down_data
**/examples/examples_bmtrain/BMTrain_stable
**/examples/examples_bmtrain/BMPretrain
**/examples/examples_bmtrain/BigModels/BigModels/results
**/Delta_Memory/

@ -0,0 +1 @@
Subproject commit 058e5f25c898a1f956e3f17a0db6d62f08173e7f

@ -0,0 +1 @@
Subproject commit 3a5083d61e73bae607574a3047deafaa76b97646

View File

@ -0,0 +1,64 @@
# Appling OpenDelta to GLUE/SuperGLUE tasks using Seq2Seq Paradigm
## install the repo
```bash
cd ../
python setup_seq2seq.py develop
```
This will add `examples_seq2seq` to the environment path of the python lib.
## Generating the json configuration file
```
python config_gen.py --job $job_name
```
The available job configuration (e.g., `--job lora_t5-base`) can be seen from `config_gen.py`. You can also
create your only configuration.
## Run the code
```
python run_seq2seq.py configs/$job_name/$dataset.json
```
## Possible Errors
1.
```
ValueError: You must login to the Hugging Face hub on this computer by typing `transformers-cli login` and entering your credentials to use `use_auth_token=Tr
ue`. Alternatively, you can pass your own token as the `use_auth_token` argument.
```
- Solution 1: Please register an account on [HuggingFace](https://huggingface.co/)
Then run transformers-cli login on your command line to enter the username and password.
- Solution 2: Disable push_to_hub by modifying in the config.json : "push_to_hub": False
2.
```
OSError: Looks like you do not have git-lfs installed, please install. You can install from https://git-lfs.github.com/. Then run `git lfs install` (you only have to do this once).
```
- Solution 1:
```
wget -P ~ https://github.com/git-lfs/git-lfs/releases/download/v3.0.2/git-lfs-linux-amd64-v3.0.2.tar.gz
cd ~
tar -xvzf git-lfs-linux-amd64-v3.0.2.tar.gz
export PATH=~:$PATH
git-lfs install
```
- Solution 2: Disable push_to_hub by modifying in the config.json : "push_to_hub": False
3. dataset connection error
Solution 1: open a python console, running the error command again, may not be useful
Solution 2: download the dataset by yourself on a internect connected machine, saved to disk and transfer to your server, at last load_from_disk.
## Link to the original training scripts
This example repo is based on the [compacter training scripts](https://github.com/rabeehk/compacter), with compacter-related lines removed. Thanks to the authors of the original repo. In addition, in private correspondence with the authors, they shared the codes to create the json configs. Thanks again for their efforts.

View File

View File

@ -0,0 +1,59 @@
# the final results will be populated here.{
"evaluate": {
"epoch": 20.0,
"eval_accuracy": 89.2156862745098,
"eval_average_metrics": 90.76168929110105,
"eval_f1": 92.3076923076923,
"eval_loss": 0.16493959724903107,
"eval_runtime": 1.6391,
"eval_samples_per_second": 124.455
},
"repo_name": "DeltaHub/bitfit_t5-base_mrpc",
"test": {
"epoch": 20.0,
"test_accuracy": 88.23529411764706,
"test_average_metrics": 89.97971602434077,
"test_f1": 91.72413793103448,
"test_loss": 0.14968213438987732,
"test_runtime": 1.6344,
"test_samples_per_second": 124.82
}
}
{
"evaluate": {
"epoch": 20.0,
"eval_average_metrics": 52.10265668831534,
"eval_loss": 0.3603779077529907,
"eval_matthews_correlation": 52.10265668831534,
"eval_runtime": 1.0808,
"eval_samples_per_second": 482.046
},
"repo_name": "DeltaHub/bitfit_t5-base_cola",
"test": {
"epoch": 20.0,
"test_average_metrics": 54.209563471221934,
"test_loss": 0.2853100299835205,
"test_matthews_correlation": 54.209563471221934,
"test_runtime": 1.056,
"test_samples_per_second": 494.304
}
}
{
"evaluate": {
"epoch": 20.0,
"eval_average_metrics": 53.80613287067274,
"eval_loss": 0.25723716616630554,
"eval_matthews_correlation": 53.80613287067274,
"eval_runtime": 1.0583,
"eval_samples_per_second": 492.299
},
"repo_name": "DeltaHub/bitfit_t5-base_cola",
"test": {
"epoch": 20.0,
"test_average_metrics": 54.32497579543861,
"test_loss": 0.22327613830566406,
"test_matthews_correlation": 54.32497579543861,
"test_runtime": 1.0556,
"test_samples_per_second": 494.507
}
}

View File

@ -0,0 +1,3 @@
from .tasks import TASK_MAPPING, AutoTask
from .data_collator import TaskDataCollatorForSeq2Seq
from .postprocessors import AutoPostProcessor

View File

@ -0,0 +1,16 @@
import numpy as np
from dataclasses import dataclass
from transformers import DataCollatorForSeq2Seq
@dataclass
class TaskDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
def check_uniqueness(self, samples):
assert len(np.unique(samples)) == 1
def __call__(self, features):
# tasks = [d.pop('task') for d in features]
# self.check_uniqueness(tasks)
output = super().__call__(features)
# output["task"] = tasks[0]
return output

View File

@ -0,0 +1,67 @@
import abc
from collections import OrderedDict
import numpy as np
"""Defines functions to process the outputs to make them ready for the evaluation."""
def string_to_float(string, default=-1., **unused_kwargs):
"""Converts string to float, using default when conversion not possible."""
try:
return float(string)
except ValueError:
return default
class PostProcessor(abc.ABC):
"""Postprocess the predictions and labels to make them suitable for
evaluation."""
def __init__(self, tokenizer, ignore_pad_token_for_loss):
self.tokenizer = tokenizer
self.ignore_pad_token_for_loss = ignore_pad_token_for_loss
def process(self, preds, labels, data_info=None):
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = self.tokenizer.batch_decode(preds, skip_special_tokens=True)
if self.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, self.tokenizer.pad_token_id)
decoded_labels = self.tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds = [pred.strip() for pred in decoded_preds]
decoded_labels = [label.strip() for label in decoded_labels]
return decoded_preds, decoded_labels
class MultiRC(PostProcessor):
def process(self, preds, labels, data_info):
preds, labels = super().process(preds, labels, data_info)
preds = [{"group": info["group"], "value":pred} \
for info, pred in zip(data_info, preds)]
labels = [{"group": info["group"], "value": label}\
for info, label in zip(data_info, labels)]
return preds, labels
class Record(PostProcessor):
def process(self, preds, labels, data_info):
preds, labels = super().process(preds, labels, data_info)
labels = [info["answers"] for info in data_info]
return preds, labels
POSTPROCESSOR_MAPPING = OrderedDict(
[
('superglue-record', Record),
('superglue-multirc', MultiRC)
]
)
class AutoPostProcessor:
@classmethod
def get(self, task, tokenizer, ignore_pad_token_for_loss):
if task in POSTPROCESSOR_MAPPING:
return POSTPROCESSOR_MAPPING[task](tokenizer, ignore_pad_token_for_loss)
return PostProcessor(tokenizer, ignore_pad_token_for_loss)

View File

@ -0,0 +1,152 @@
class BasePrompt(object):
def __init__(self, template_id=0, verbalizer_id=0, generation=True):
self.template = self.textual_templates[template_id]
if generation:
self.verbalizer = self.generation_verbalizers[verbalizer_id]
else:
self.verbalizer = self.mlmhead_verbalizers[verbalizer_id]
def __call__(self, example):
def eval_syntax(syntaxlist, example):
composed = []
for x in syntaxlist:
if x.startswith("[_eval_]"):
t = eval(x[len("[_eval_]"):])
else:
t = x
composed.append(t)
return composed
src_texts = eval_syntax(self.template,example)
tgt_texts = self.verbalizer[str(example['label'])]
if isinstance(tgt_texts, list):
tgt_texts = eval_syntax(tgt_texts, example)
else:
tgt_texts = [tgt_texts]
return src_texts, tgt_texts
class MRPCPrompt(BasePrompt):
generation_verbalizers = [
{
"0": "different",
"1": "same"
},
{
"0": "not_equivalent",
"1": "equivalent"
}
]
mlmhead_verbalizers = {
"0": "different",
"1": "same"
}
textual_templates = [
["sentence1:", """[_eval_]example['sentence1']""",
"sentence2:", """[_eval_]example["sentence2"]""", "Meanings different of same? Answer: " ]
]
class BoolQPrompt(BasePrompt):
generation_verbalizers = [
{
"0": "different",
"1": "same"
},
{
"0": "not_equivalent",
"1": "equivalent"
}
]
mlmhead_verbalizers = {
"0": "different",
"1": "same"
}
textual_templates = [
["sentence1:", """[_eval_]example['sentence1']""",
"sentence2:", """[_eval_]example["sentence2"]""", "Meanings different of same? Answer: " ]
]
class BoolQPrompt(BasePrompt):
generation_verbalizers = [
{
"0": "no",
"1": "yes"
},
]
mlmhead_verbalizers = {
"0": "no",
"1": "yes"
}
textual_templates = [
["hypothesis:", """[_eval_]example['hypothesis']""",
"premise:", """[_eval_]example["premise"]""", "The answer was " ]
]
class COLAPrompt(BasePrompt):
generation_verbalizers = [
{
"0": "No",
"1": "Yes"
},
]
mlmhead_verbalizers = {
"0": "No",
"1": "Yes"
}
textual_templates = [
["sentence:", """[_eval_]example['sentence']""",
"grammar correct? " ]
]
class RTEPrompt(BasePrompt):
generation_verbalizers = [
{
"0": "yes",
"1": "no"
},
]
mlmhead_verbalizers = {
"0": "yes",
"1": "no"
}
textual_templates = [
["sentence1:", """[_eval_]example['premise']""", "sentence2:",
"""[_eval_]example['hypothesis']""",
"The answer was " ]
]
class CBPrompt(BasePrompt):
generation_verbalizers = [{
"0": "yes",
"1": "no",
"2": "maybe"
},
]
mlmhead_verbalizers = [{
"0": "yes",
"1": "no",
"2": "maybe"
}]
textual_templates = [
["hypothesis:", """[_eval_]example['hypothesis']""", "premise:",
"""[_eval_]example['premise']""",
"The answer was " ]
]
PromptCollections = {
"mrpc": MRPCPrompt,
"cola": COLAPrompt,
"rte": RTEPrompt,
"superglue-boolq": BoolQPrompt,
"cb": CBPrompt,
}

View File

@ -0,0 +1,593 @@
from collections import OrderedDict
import collections
import abc
import functools
from selectors import EpollSelector
from typing import Callable, List, Mapping
from examples_prompt.trainers.trainer_utils import pad_punctuation
from examples_prompt.metrics import metrics
from .utils import round_stsb_target
import datasets
import logging
import numpy as np
import torch
import re
from examples_prompt.data_processors.prompt import PromptCollections
logger = logging.getLogger(__name__)
class AbstractTask(abc.ABC):
name = NotImplemented
config = NotImplemented
prefix = NotImplemented
metric = NotImplemented
metric_names = NotImplemented
split_map = None
labels_list = None
split_to_data_split: Mapping[str, str] = \
{"train": "train", "validation": "validation", "test": "test"}
small_datasets_without_all_splits = ["cola", "wnli", "rte", "superglue-cb", "superglue-copa", "superglue-multirc",
"superglue-wic", "superglue-wsc.fixed", "superglue-rte", "mrpc", "stsb",
"superglue-boolq"]
large_data_without_all_splits = ["qqp", "qnli", "superglue-record", "sst2"]
def __init__(self, config, seed=42):
self.config = config
self.seed = seed
tid = getattr(config, "template_id", 0)
vid = getattr(config, "verbalizer_id", 0)
generation_paradigm = getattr(config, "generation_paradigm", True)
self.prompt = PromptCollections[self.name](tid, vid, generation_paradigm)
def get_max_target_length(self, tokenizer, default_max_length):
if self.prompt.verbalizer is not None:
return max([len(tokenizer.encode(label)) for key, label in self.prompt.verbalizer.items()])
return default_max_length
def seq2seq_format(self, source, target, extra_fields={}
):
return {'source': ' '.join(source),
'target': ' '.join(target),
'task': self.name,
'extra_fields': extra_fields
}
def check_n_obs(self, n_obs, total_size):
if n_obs is not None and n_obs > total_size:
n_obs = total_size
logger.warning("n_obs is set to %s", n_obs)
return n_obs
def shuffled_indices(self, dataset):
num_samples = len(dataset)
generator = torch.Generator()
generator.manual_seed(self.seed)
return torch.randperm(num_samples, generator=generator).tolist()
def subsample(self, dataset, n_obs=None, indices=None):
"""
Given a dataset returns the subsampled dataset.
:param n_obs: the number of samples of the subsampled dataset.
:param indices: indices to select the samples from, if not given, indices are computed
from by shuffling the given dataset.
:return: subsampled dataset.
"""
num_samples = len(dataset)
n_obs = self.check_n_obs(n_obs, num_samples)
if indices is None:
indices = self.shuffled_indices(dataset)
indices = indices[:n_obs]
return dataset.select(indices)
def load_dataset(self, split: int):
return datasets.load_dataset(self.name, self.config, split=split, script_version="master")
def get_split_indices(self, split, dataset, validation_size):
indices = self.shuffled_indices(dataset)
if split == "validation":
return indices[:validation_size]
else:
return indices[validation_size:]
def map_dataset(self, dataset, add_prefix):
# from IPython import embed; embed(header="in get target length")
return dataset.map(self.preprocessor)
def preprocessor(self, example):
source, target = self.prompt(example)
return self.seq2seq_format(source, target, extra_fields={})
def get(self, split, add_prefix=True, n_obs=None, split_validation_test=False):
# For small datasets (n_samples < 10K) without test set, we divide validation set to
# half, use one half as test set and one half as validation set.
if split_validation_test and self.name in self.small_datasets_without_all_splits \
and split != "train":
mapped_split = self.split_to_data_split["validation"]
dataset = self.load_dataset(split=mapped_split)
indices = self.get_split_indices(split, dataset, validation_size=len(dataset)//2)
dataset = self.subsample(dataset, n_obs, indices)
# For larger datasets (n_samples > 10K), we divide training set into 1K as
# validation and the rest as training set, keeping the original validation
# set as the test set.
elif split_validation_test and self.name in self.large_data_without_all_splits \
and split != "test":
dataset = self.load_dataset(split="train")
indices = self.get_split_indices(split, dataset, validation_size=1000)
dataset = self.subsample(dataset, n_obs, indices)
else:
mapped_split = self.split_to_data_split[split]
dataset = self.load_dataset(split=mapped_split)
# shuffles the data and samples it.
if n_obs is not None:
dataset = self.subsample(dataset, n_obs)
return self.map_dataset(dataset, add_prefix)
class Squad(AbstractTask):
name = "squad"
metric = [metrics.squad]
def load_dataset(self, split):
return datasets.load_dataset(self.name, split=split, script_version="master")
def preprocessor(self, example, add_prefix):
answer = pad_punctuation(example['answers']['text'][0])
question = pad_punctuation(example['question'])
context = pad_punctuation(example['context'])
source = ["question:", question,
"context:", context]
target = [answer]
return self.seq2seq_format(source, target, add_prefix)
class MRPC(AbstractTask):
name = "mrpc"
labels_list = ["0", "1"]
metric = [metrics.f1_score, metrics.accuracy]
metric_names = ["f1", "accuracy"]
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
def load_dataset(self, split):
return datasets.load_dataset('glue', 'mrpc', split=split, script_version="master")
# def preprocessor(self, example, add_prefix=True):
# src_texts = ["sentence1:", example['sentence1'],
# "sentence2:", example["sentence2"]]
# tgt_texts = [str(example['label'])]
# return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class COLA(AbstractTask):
name = "cola"
labels_list = ["0", "1"]
metric = [metrics.matthews_corrcoef]
metric_names = ["matthews_correlation"]
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
def load_dataset(self, split):
return datasets.load_dataset('glue', 'cola',
split=split, script_version="master")
# def preprocessor(self, example, add_prefix=True):
# src_texts = ["sentence:", example['sentence']]
# tgt_texts = [str(example['label'])]
# return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class SST2(AbstractTask):
name = "sst2"
labels_list = ["0", "1"]
metric = [metrics.accuracy]
metric_names = ["accuracy"]
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
def load_dataset(self, split):
return datasets.load_dataset('glue', 'sst2',
split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["sentence:", example['sentence']]
tgt_texts = [str(example['label'])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class STSB(AbstractTask):
name = "stsb"
labels_list = [str(np.round(label, decimals=1)) for label in np.arange(0, 5.2, 0.2)]
metric = [metrics.pearson_corrcoef, metrics.spearman_corrcoef]
metric_names = ["pearson", "spearmanr"]
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
def load_dataset(self, split):
return datasets.load_dataset('glue', 'stsb',
split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["sentence1:", example['sentence1'],
"sentence2:", example["sentence2"]]
tgt_texts = [str(round_stsb_target(example['label']))]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class QQP(AbstractTask):
name = "qqp"
labels_list = ["0", "1"]
metric = [metrics.f1_score, metrics.accuracy]
metric_names = ["f1", "accuracy"]
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
def load_dataset(self, split):
return datasets.load_dataset('glue', 'qqp',
split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["question1:", example['question1'],
"question2:", example["question2"]]
tgt_texts = [str(example['label'])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class MNLI(AbstractTask):
name = "mnli"
labels_list = ["0", "1", "2"]
split_to_data_split = {"train": "train",
"validation": "validation_mismatched",
"test": "validation_matched"}
metric = [metrics.accuracy]
metric_names = ["accuracy"]
def load_dataset(self, split):
return datasets.load_dataset('glue', 'mnli', split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["premise:", example['premise'],
"hypothesis", example["hypothesis"]]
tgt_texts = [str(example['label'])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class QNLI(AbstractTask):
name = "qnli"
labels_list = ["0", "1"]
metric = [metrics.accuracy]
metric_names = ["accuracy"]
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
def load_dataset(self, split):
return datasets.load_dataset('glue', 'qnli', split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["question:", example['question'],
"sentence:", example["sentence"]]
tgt_texts = [str(example['label'])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class RTE(AbstractTask):
name = "rte"
labels_list = ["0", "1"]
metric = [metrics.accuracy]
metric_names = ["accuracy"]
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
def load_dataset(self, split):
return datasets.load_dataset('glue', 'rte',
split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["sentence1:", example['sentence1'],
"sentence2:", example["sentence2"]]
tgt_texts = [str(example['label'])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class WNLI(AbstractTask):
name = "wnli"
labels_list = ["0", "1"]
metric = [metrics.accuracy]
metric_names = ["accuracy"]
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
def load_dataset(self, split):
return datasets.load_dataset('glue', 'wnli', split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["sentence1:", example['sentence1'],
"sentence2:", example["sentence2"]]
tgt_texts = [str(example['label'])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class SuperGLUEBoolQ(AbstractTask):
name="superglue-boolq"
labels_list = ['0', '1']
metric = [metrics.accuracy]
metric_names = ["accuracy"]
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
def load_dataset(self, split):
return datasets.load_dataset('super_glue', 'boolq', split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["question:", example["question"], "passage:", example["passage"]]
tgt_texts = [str(example["label"])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class SuperGLUERTE(AbstractTask):
name="superglue-rte"
labels_list = ['0', '1']
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
metric = [metrics.accuracy]
metric_names = ["accuracy"]
def load_dataset(self, split):
return datasets.load_dataset('super_glue', 'rte', split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["premise:", example["premise"],
"hypothesis:", example["hypothesis"]]
tgt_texts = [str(example["label"])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class SuperGLUECB(AbstractTask):
name = "superglue-cb"
labels_list = ['0', '1', '2']
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
metric = [metrics.mean_multiclass_f1(num_classes=3), metrics.accuracy]
metric_names = ["f1_multiclass", "accuracy"]
def load_dataset(self, split):
return datasets.load_dataset('super_glue', 'cb', split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["premise:", example["premise"], "hypothesis:", example["hypothesis"]]
tgt_texts = [str(example["label"])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class SuperGLUECOPA(AbstractTask):
name = "superglue-copa"
labels_list = ['0', '1']
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
metric = [metrics.accuracy]
metric_names = ["accuracy"]
def load_dataset(self, split):
return datasets.load_dataset('super_glue', 'copa', split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["premise:", example["premise"],
"choice1:", example["choice1"],
"choice2:", example["choice2"]]
tgt_texts = [str(example["label"])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class SuperGLUEMultiRC(AbstractTask):
name = "superglue-multirc"
labels_list = ['0', '1']
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
metric = [metrics.multirc_f1_over_all_answers,
metrics.mean_group_metric(metrics.exact_match)]
metric_names = ["f1", "em"]
def load_dataset(self, split):
return datasets.load_dataset('super_glue', 'multirc', split=split, script_version="master")
def remove_markup(self, text):
"""Removes the HTML markup."""
text = re.sub('<br>', ' ', text)
text = re.sub('<(/)?b>', '', text)
return text
def preprocessor(self, example, add_prefix=True):
group = example['idx']['question']
# T5 applies remove_markup to the joined string, but this should not make
# any difference as well.
# https://github.com/google-research/text-to-text-transfer-transformer/blob/a1352e625db7ec114062f99d99b0565b9e45c155/t5/data/preprocessors.py#L797
src_texts = ["question:", self.remove_markup(example["question"]),
"answer:", self.remove_markup(example["answer"]),
"paragraph:", self.remove_markup(example["paragraph"])]
tgt_texts = [str(example["label"])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix, extra_fields={"group": group})
class SuperGLUEWIC(AbstractTask):
name = "superglue-wic"
labels_list = ['0', '1']
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
metric = [metrics.accuracy]
metric_names = ["accuracy"]
def load_dataset(self, split):
return datasets.load_dataset('super_glue', 'wic', split=split, script_version="master")
def preprocessor(self, example, add_prefix=True):
src_texts = ["sentence1:", example["sentence1"],
"sentence2:", example["sentence2"],
"word:", example["word"]]
tgt_texts = [str(example["label"])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class SuperGLUEWSCFixed(AbstractTask):
# source: https://github.com/google-research/text-to-text-transfer-transformer/blob/master/t5/data/preprocessors.py
"""Convert WSC examples to text2text format.
WSC includes a sentence along with 2 'spans': the first denoting a noun and
the other a pronoun. The 'label' specifies whether or not the pronoun is
referencing the noun. This preprocessor puts ' * ' around the noun and ' # '
around the pronoun.
For example, a typical example from WSC might look like
{
'text': 'This is a test sentence .',
'span1_text': 'test',
'span1_index': 3,
'span2_text': 'This',
'span2_index': 0,
'label': 0
}
This example would be transformed to
{
'inputs': 'wsc text: # This # is a * test * sentence .',
'targets': 'False'
}
"""
name = "superglue-wsc.fixed"
labels_list = ['0', '1']
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
metric = [metrics.accuracy]
metric_names = ["accuracy"]
def load_dataset(self, split):
return datasets.load_dataset('super_glue', 'wsc.fixed', split=split, script_version="master")
def _mark_span(self, text, span_str, span_idx, mark):
pattern_tmpl = r'^((?:\S+\s){N})(W)'
pattern = re.sub('N', str(span_idx), pattern_tmpl)
pattern = re.sub('W', span_str, pattern)
return re.sub(pattern, r'\1{0} \2 {0}'.format(mark), text)
def preprocessor(self, example, add_prefix=True):
# converts text as done in T5.
text = example['text']
text = self._mark_span(text, example['span1_text'], example['span1_index'], '*')
# Compensate for 2 added "words" added in previous step.
span2_index = example['span2_index'] + 2 * int(example['span1_index'] < example['span2_index'])
text = self._mark_span(text, example['span2_text'], span2_index, '#')
src_texts = ["text:", text]
tgt_texts = [str(example["label"])]
return self.seq2seq_format(src_texts, tgt_texts, add_prefix)
class SuperGLUERecord(AbstractTask):
"""Convert ReCoRD examples to text2text examples.
ReCoRD contains a passage, query containing a '@placeholder' string, and a set
of entities that are the possible values of the placeholder. Each train and
validation example will have a list of answers, any of which would be
considered correct.
For example, a typical example from ReCoRD might look like
{
'passsage': 'This is the passage.',
'query': 'A @placeholder is a bird.',
'entities': ['penguin', 'potato', 'pigeon'],
'answers': ['penguin', 'pigeon'],
}
which this preprocessor would turn into the following two examples:
{
'inputs': 'record query: A @placeholder is a bird. entities: penguin, '
'potato, pigeon passage: This is the passage.',
'targets': 'penguin',
}
and
{
'inputs': 'record query: A @placeholder is a bird. entities: penguin, '
'potato, pigeon passage: This is the passage.',
'targets': 'pigeon',
}
"""
name = "superglue-record"
split_to_data_split = {"train": "train",
"validation": "validation",
"test": "validation"}
metric = [metrics.squad]
metric_names = ["squad"]
def load_dataset(self, split):
return datasets.load_dataset('super_glue', 'record', split=split, script_version="master")
def preprocessor(self, batch, add_prefix=True):
new_batch = collections.defaultdict(list)
keys = batch.keys()
for values in zip(*batch.values()):
ex = {k: v for k, v in zip(keys, values)}
# updates the passage.
passage = ex['passage']
passage = re.sub(r'(\.|\?|\!|\"|\')\n@highlight\n', r'\1 ', passage)
passage = re.sub(r'\n@highlight\n', '. ', passage)
inputs = f"record query: {ex['query']} entities: {', '.join(ex['entities'])} passage: {passage}"
if add_prefix:
inputs = self.name + " " + inputs
# duplicates the samples based on number of answers.
num_answers = len(ex["answers"])
num_duplicates = np.maximum(1, num_answers)
new_batch["source"].extend([inputs] * num_duplicates)
new_batch["target"].extend(ex["answers"] if num_answers > 0 else ["<unk>"])
new_batch["task"].extend([self.name] * num_duplicates)
new_batch["extra_fields"].extend([{"answers": ex["answers"]}]*num_duplicates)
return new_batch
def map_dataset(self, dataset, add_prefix=True):
return dataset.map(functools.partial(self.preprocessor, add_prefix=add_prefix),
batched=True, remove_columns=dataset.column_names)
TASK_MAPPING = OrderedDict(
[
('squad', Squad),
('mrpc', MRPC),
('cola', COLA),
('sst2', SST2),
('qnli', QNLI),
('rte', RTE),
('wnli', WNLI),
('mnli', MNLI),
('qqp', QQP),
('stsb', STSB),
('superglue-boolq', SuperGLUEBoolQ),
('superglue-rte', SuperGLUERTE),
('superglue-cb', SuperGLUECB),
('superglue-copa', SuperGLUECOPA),
('superglue-multirc', SuperGLUEMultiRC),
('superglue-wic', SuperGLUEWIC),
('superglue-wsc.fixed', SuperGLUEWSCFixed),
('superglue-record', SuperGLUERecord)
]
)
class AutoTask:
@classmethod
def get(self, task, config, seed=42):
if task in TASK_MAPPING:
return TASK_MAPPING[task](config, seed)
raise ValueError(
"Unrecognized task {} for AutoTask Model: {}.\n"
"Task name should be one of {}.".format(
", ".join(c for c in TASK_MAPPING.keys())
)
)

View File

@ -0,0 +1,17 @@
import numpy as np
def round_stsb_target(label):
"""STSB maps two sentences to a floating point number between 1 and 5
representing their semantic similarity. Since we are treating all tasks as
text-to-text tasks we need to convert this floating point number to a string.
The vast majority of the similarity score labels in STSB are in the set
[0, 0.2, 0.4, ..., 4.8, 5.0]. So, we first round the number to the closest
entry in this set, and then we convert the result to a string (literally e.g.
"3.4"). This converts STSB roughly into a 26-class classification dataset.
Args:
label: original label.
Returns:
A preprocessed label.
"""
return np.round((label * 5) / 5, decimals=1)

View File

@ -0,0 +1,175 @@
# several of the evaluation metrics are from https://github.com/google-research/text-to-text-transfer-transformer/blob/a1352e625db7ec114062f99d99b0565b9e45c155/t5/evaluation/metrics.py
"""Defines different metrics used for evaluation of tasks."""
import numpy as np
import scipy
import math
import sklearn
import collections
from logging import getLogger
from .qa_utils import normalize_squad, qa_metrics
import sklearn.metrics
logger = getLogger(__name__)
def accuracy(predictions, targets) -> dict:
"""Computes the average accuracy."""
return {"accuracy": 100 * ((np.array(predictions) == np.array(targets)).mean())}
def pearson_corrcoef(predictions, targets) -> dict:
"""Computes Pearson correlation coefficient."""
from examples_seq2seq.data_processors.postprocessors import string_to_float
targets = [string_to_float(target) for target in targets]
predictions= [string_to_float(prediction) for prediction in predictions]
pearson_corrcoef = 100 * scipy.stats.pearsonr(targets, predictions)[0]
# Note that if all the predictions will be the same, spearman
# correlation is nan, to gaurad against this, we check the output
# and return 0 in this case.
if math.isnan(pearson_corrcoef):
pearson_corrcoef = 0
return {"pearson": pearson_corrcoef}
def spearman_corrcoef(predictions, targets) -> dict:
"""Computes Spearman correlation coefficient."""
# TODO: we need to do postprocessors in a clean way for each dataset.
from examples_seq2seq.data_processors.postprocessors import string_to_float
targets = [string_to_float(target) for target in targets]
predictions= [string_to_float(prediction) for prediction in predictions]
spearman_corrcoef = 100 * scipy.stats.spearmanr(targets, predictions)[0]
# Note that if all the predictions will be the same, spearman
# correlation is nan, to gaurad against this, we check the output
# and return 0 in this case.
if math.isnan(spearman_corrcoef):
spearman_corrcoef = 0
return {"spearmanr": spearman_corrcoef}
def transform_for_generation(predictions, targets):
mapping = {k: i for i, k in enumerate(set(targets))}
targets = np.asarray([mapping[k] for k in targets])
predictions = np.asarray([mapping[k] if k in mapping else (t+1)%len(mapping) for t, k in zip(targets, predictions)])
return predictions, targets
def f1_score(predictions, targets) -> dict:
"""Computes F1 score, with any prediction != 0 or 1 is counted as incorrect.
Args:
targets: list of targets, either 0 or 1
predictions: list of predictions, any integer value
Returns:
F1 score, where any prediction != 0 or 1 is counted as wrong.
"""
targets = targets.astype(np.int32)
predictions = predictions.astype(np.int32)
return {"f1": 100 * sklearn.metrics.f1_score(targets, predictions)}
# TODO: maybe gaurd against invalid values https://stackoverflow.com/questions/56865344/how-do-i-calculate-the-matthews-correlation-coefficient-in-tensorflow
def matthews_corrcoef(predictions, targets) -> dict:
"""Computes the Matthews correlation coefficient."""
return {"matthews_correlation": 100 * sklearn.metrics.matthews_corrcoef(targets, predictions)}
def squad(predictions, targets):
"""Computes SQuAD metrics, maximizing over answers per question.
Args:
targets: list of lists of strings
predictions: list of strings
Returns:
dict with score_key: squad score across all targets and predictions
"""
targets = [[normalize_squad(t) for t in u] for u in targets]
predictions = [normalize_squad(p) for p in predictions]
return qa_metrics(targets, predictions)
def exact_match(predictions, targets):
"""Computes whether the targets match predictions exactly."""
return {"em": 100 * float(np.array_equal(targets, predictions))}
def sklearn_metrics_wrapper(metric_str,
metric_dict_str=None,
metric_post_process_fn=None,
**metric_fn_kwargs):
"""Wraps any sklearn.metric function and returns a t5 metric function.
Args:
metric_str: string, the function from `sklearn.metrics` to use.
metric_dict_str: optional string, if not specified `metric_str` is used as
the key in the returned dictionary.
metric_post_process_fn: callable, if specified the final computed metric
will be passed through this.
**metric_fn_kwargs: kwargs, passed to the metric function we are calling.
Returns:
the function that calculates the metric in a dict.
"""
if not hasattr(sklearn.metrics, metric_str):
raise ValueError("sklearn.metrics does not have: %s" % metric_str)
def fn(predictions, targets):
metric_fn = getattr(sklearn.metrics, metric_str)
metric_val = metric_fn(targets, predictions, **metric_fn_kwargs)
if metric_post_process_fn is not None:
metric_val = metric_post_process_fn(metric_val)
return {metric_dict_str or metric_str: metric_val}
return fn
def mean_multiclass_f1(num_classes, **metric_fn_kwargs):
"""Computes the unweighted average of the F1 per class."""
return sklearn_metrics_wrapper(
"fbeta_score",
metric_dict_str="f1_multiclass",
metric_post_process_fn=lambda x: 100 * x,
beta=1,
labels=range(num_classes),
average="macro",
**metric_fn_kwargs)
def multirc_f1_over_all_answers(targets, predictions):
"""Special metric for MultiRC which computes F1 score over all examples.
This is necessary because the targets/predictions for MultiRC are dicts and
the f1_score_with_invalid expects a list of True/False labels, not dicts. As
a result we just need to key in the "value" for each of the example dicts
before feeding into f1_score_with_invalid.
Args:
targets: list of dicts, where each dict has a "value" key.
predictions: list of dicts, where each dict has a "value" key.
Returns:
F1 score over values, where any prediction != 0 or 1 is counted as wrong.
"""
return f1_score_with_invalid(
[t["value"] for t in targets], [p["value"] for p in predictions]
)
def mean_group_metric(metric_fn, group_key="group", value_key="value"):
"""Returns a metric that averages `metric_fn` on sub-groups of results.
The sub-groups are defined by aggregating results (targets and predictions)
by accessing the feature specified by `group_key` in the target dicts.
**WARNING**: Using this function can produce unreliable results if you do not
pass in full groups. For example, if you evaluate over a random subsample of a
validation set and do not retain all of the examples in each group, you may
get results which aren't directly comparable to using the full validation set.
Args:
metric_fn: function, the metric to compute on the subgroups.
group_key: string, the key for the grouping value in the target dictionary.
value_key: string, the key for the value in the dictionaries.
"""
def my_metric(targets, predictions):
"""Computes mean of `metric_fn` over subgroups of results."""
grouped_values = collections.defaultdict(lambda: ([], []))
for targ, pred in zip(targets, predictions):
g = targ[group_key]
grouped_values[g][0].append(targ[value_key])
grouped_values[g][1].append(pred[value_key])
group_scores = collections.defaultdict(list)
for (targets, predictions) in grouped_values.values():
for metric, score in metric_fn(targets, predictions).items():
group_scores[metric].append(score)
return {metric: np.mean(scores) for metric, scores in group_scores.items()}
return my_metric

View File

@ -0,0 +1,96 @@
# Copyright 2021 The T5 Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# source: the codes are from https://github.com/google-research/text-to-text-transfer-transformer
"""Utilities for Question Answering (QA) evaluation.
Matches results on the SQuAD (v1.1) and TriviaQA (v1.0) evaluation scripts.
"""
import collections
import string
import regex as re
import numpy as np
def _normalize_answer(text, punc_chars, punc_repl):
"""Lower text and remove punctuation, articles and extra whitespace."""
def remove_articles(s):
return re.sub(r"\b(a|an|the)\b", " ", s)
def replace_punctuation(s):
to_replace = set(punc_chars)
return "".join(punc_repl if ch in to_replace else ch for ch in s)
def white_space_fix(s):
return " ".join(s.split())
text = text.lower()
text = replace_punctuation(text)
text = remove_articles(text)
text = white_space_fix(text)
return text
def normalize_trivia_qa(answer):
"""Normalization used in official TriviaQA evaluation script."""
return _normalize_answer(
answer, punc_chars=string.punctuation + "´`_", punc_repl=" ").strip()
def normalize_squad(answer):
"""Normalization used in official SQuAD evaluation script."""
return _normalize_answer(answer, punc_chars=string.punctuation, punc_repl="")
def _metric_max_over_ground_truths(metric_fn, ground_truths, prediction):
"""Computes the maximum of the metric over all ground truths."""
return max(
metric_fn(ground_truth, prediction) for ground_truth in ground_truths
)
def _exact_match_score(target, prediction):
return target == prediction
def _f1_score(target, prediction):
"""Computes token f1 score for a single target and prediction."""
prediction_tokens = prediction.split()
target_tokens = target.split()
common = (collections.Counter(prediction_tokens) &
collections.Counter(target_tokens))
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(target_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def qa_metrics(targets, predictions):
"""Computes exact match and f1 QA scores, expecting pre-normalized text."""
if len(targets) != len(predictions):
raise ValueError("Number of targets and predictions must match.")
em = np.mean([
_metric_max_over_ground_truths(_exact_match_score, t, p)
for p, t in zip(predictions, targets)
])
f1 = np.mean([
_metric_max_over_ground_truths(_f1_score, t, p)
for p, t in zip(predictions, targets)
])
em *= 100
f1 *= 100
return {"em": em, "f1": f1}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0002561697332863371,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/10940816",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0017750209757755706,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/1107862",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 16,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 8.499916262600587e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/15328099",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0006091646696452159,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/15991793",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 16,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.020109951371648067,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/19489534",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.005159882530578781,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/2281342",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.006869610954981632,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/26349674",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0002723799659564822,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/28219263",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0018605158382269157,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/28244173",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0001248231069039661,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/28313708",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0009490000624893097,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/28844651",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 3.5602209401278214e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/28881946",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.004220683008677483,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/29695566",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.004159184883370181,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/304080",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0009353172054773991,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/33594301",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0037650265946582574,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/37208828",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 16,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 6.867655291394631e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/38351436",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0022951686429675895,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/42338278",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0011474682877585407,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/43419391",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.009965694572181888,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/45030088",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0020236592832077785,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/50851153",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1 @@
{"batch_size": 64, "dataset_config_name": ["en"], "delta_type": "bitfit", "do_eval": true, "do_test": true, "do_train": true, "eval_dataset_config_name": ["en"], "eval_dataset_name": "mrpc", "eval_steps": 200, "evaluation_strategy": "steps", "gradient_accumulation_steps": 1, "greater_is_better": true, "learning_rate": 0.0020236592832077785, "load_best_model_at_end": true, "max_source_length": 128, "max_steps": 5000, "metric_for_best_model": "average_metrics", "model_name_or_path": "t5-base", "output_dir": "outputs_search/bitfit.mrpc.t5-base/50851153", "overwrite_output_dir": true, "per_device_eval_batch_size": 64, "per_device_train_batch_size": 64, "predict_with_generate": true, "push_to_hub": false, "save_steps": 200, "save_strategy": "steps", "save_total_limit": 1, "seed": 100, "split_validation_test": true, "task_name": "mrpc", "test_dataset_config_name": ["en"], "test_dataset_name": "mrpc", "tokenizer_name": "t5-base", "warmup_steps": 0}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.011098597581779427,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/57783553",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0005414844782319124,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/6060488",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.016927560240899083,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/61860753",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 1.0141082015912518e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/63232091",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0018137027382556477,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/6329472",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.023938918670661075,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/64753972",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 16,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.08212873599011565,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/65221118",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 4.8538530604501934e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/66798551",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0056649657801790786,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/67615376",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.03495857107255486,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/6773136",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.00039059864620439417,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/68027569",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0002642938525995798,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/68314189",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.037536374095955345,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/71501650",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.008866400032296955,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/73962149",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.01086484610816823,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/83260414",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 1.2611496517588744e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/83839551",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0010110776655071255,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/85624941",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0005414844782319124,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/86039549",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0027955533792956614,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/89676181",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0012573200149141731,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/91446644",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.001152480984285531,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/92427532",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 16,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.002464124578330328,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/93923515",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 16,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.000127337205276883,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/96799644",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.017304287780519442,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/97118516",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.057233123182472576,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/97177600",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.041620230849224296,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/97660529",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.0005420479832650441,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/98459622",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0026938134462562973,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/99566760",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.00702408842393251,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/99826259",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "mrpc",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.00702408842393251,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.mrpc.t5-base/99826259",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "mrpc",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "mrpc",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 103 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 186 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 1.1032607780913182e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/1123702",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 9.869021064463024e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/12173417",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.000913136097576348,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/14983360",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 1.1605972169428286e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/17148549",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 2.8707127478048054e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/18069491",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.000194974976225138,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/20719975",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.03781286205477464,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/26158876",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 32,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0618810008699179,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/28522034",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 32,
"per_device_train_batch_size": 32,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 6.262592496186088e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/29099149",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 4.8538530604501934e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/30778533",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 16,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0009445961555576889,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/33442523",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 16,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.020109951371648067,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/35699804",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 6.0263760479697114e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/41924547",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 7.833953000267327e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/45992418",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.0005632466045355159,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/46821674",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.008374542128252581,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/47176009",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 0
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 7.170024484707928e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/47432895",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 0.00043437143218908386,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/47615745",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 0.00010014550655645348,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/49804166",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 16,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 1,
"greater_is_better": true,
"learning_rate": 6.867655291394631e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/52735972",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 16,
"per_device_train_batch_size": 16,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

View File

@ -0,0 +1,42 @@
{
"batch_size": 64,
"dataset_config_name": [
"en"
],
"delta_type": "bitfit",
"do_eval": true,
"do_test": true,
"do_train": true,
"eval_dataset_config_name": [
"en"
],
"eval_dataset_name": "rte",
"eval_steps": 200,
"evaluation_strategy": "steps",
"gradient_accumulation_steps": 2,
"greater_is_better": true,
"learning_rate": 1.1566052650322366e-05,
"load_best_model_at_end": true,
"max_source_length": 128,
"max_steps": 5000,
"metric_for_best_model": "average_metrics",
"model_name_or_path": "t5-base",
"output_dir": "outputs_search/bitfit.rte.t5-base/56419593",
"overwrite_output_dir": true,
"per_device_eval_batch_size": 64,
"per_device_train_batch_size": 64,
"predict_with_generate": true,
"push_to_hub": false,
"save_steps": 200,
"save_strategy": "steps",
"save_total_limit": 1,
"seed": 100,
"split_validation_test": true,
"task_name": "rte",
"test_dataset_config_name": [
"en"
],
"test_dataset_name": "rte",
"tokenizer_name": "t5-base",
"warmup_steps": 500
}

Some files were not shown because too many files have changed in this diff Show More