diff --git a/.gitignore b/.gitignore
index 22d883c..1ca34e3 100644
--- a/.gitignore
+++ b/.gitignore
@@ -54,8 +54,13 @@ t.sh
**/delta_checkpoints/
**/outputs/
+dist/*
**/unittest/**
!unittest/**.py
!unittest/**.sh
+**/tutorial/**
+!tutorial/**.py
+!tutorial/**.sh
+!tutorial/**.md
diff --git a/docs/source/conf.py b/docs/source/conf.py
index 1be8e51..8a94518 100644
--- a/docs/source/conf.py
+++ b/docs/source/conf.py
@@ -31,8 +31,8 @@ copyright = '{}, {}, Licenced under the Apache License, Version 2.0'.format(date
# The full version, including alpha/beta/rc tags
-release = '0.3.1'
-version = "0.3.1"
+release = '0.3.2'
+version = "0.3.2"
html_theme = 'sphinx_rtd_theme'
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
diff --git a/docs/source/notes/acceleration.md b/docs/source/notes/acceleration.md
index 6b088b4..4bb258f 100644
--- a/docs/source/notes/acceleration.md
+++ b/docs/source/notes/acceleration.md
@@ -1,6 +1,14 @@
(acceleration)=
# OpenDelta+
- We are working on testing and improving the functionality with work with other acceleration packages for model training and inference. For example, [deepspeed](https://github.com/microsoft/DeepSpeed), [BMInf](https://github.com/OpenBMB/BMInf).
-Feel free to contact us via email (shengdinghu@gmail.com) if you have any suggestion.
+## BMTrain
+
+- [BMTrain](https://github.com/OpenBMB/BMTrain) is an efficient large model training toolkit that can be used to train large models with tens of billions of parameters. It can train models in a distributed manner while keeping the code as simple as stand-alone training.
+- [ModelCenter](https://github.com/OpenBMB/ModelCenter) implements pre-trained language models (PLMs) based on the backend OpenBMB/BMTrain. ModelCenter supports Efficient, Low-Resource, Extendable model usage and distributed training.
+
+Now we have the LoraModel, AdapterModel, CompacterModel, ParallelAdapterModel, LowRankAdapterModel fully supported the distributed training with BMTrain and ModelCenter. Please try is out in
+
+
+## Huggingface Accelerate
+
\ No newline at end of file
diff --git a/docs/source/notes/update.md b/docs/source/notes/update.md
index 26626d2..e121178 100644
--- a/docs/source/notes/update.md
+++ b/docs/source/notes/update.md
@@ -1,5 +1,10 @@
# Update Logs and Known Issues
+## Version 0.3.2
+- We support BMTrain to accelerate the training, and parallelize the training of models that are hard to fit in a single GPU. Check [tutorial/2_with_bmtrain.py](https://github.com/thunlp/OpenDelta/tree/main/examples/tutorial/2_with_bmtrain.py)
+- We add a functionality to [inspect the optimizer](https://github.com/thunlp/OpenDelta/tree/main/opendelta/utils/inspect.py). The user can see the number of trainable parameters in the optimizer and verify that opendelta is being used correctly.
+- We move the functions to inspect the delta models into [inspect.py](https://github.com/thunlp/OpenDelta/tree/main/opendelta/utils/inspect.py)
+
## Version 0.3.1
- We update [must_try.py](https://github.com/thunlp/OpenDelta/tree/main/examples/unittest/must_try.py) for a simple introduction of the core functionality of OpenDelta.
- Thanks to [Weilin Zhao](https://github.com/Achazwl) We merge a long-developed branch parallel_adapter into the main branch.
diff --git a/examples/tutorial/2_with_bmtrain.py b/examples/tutorial/2_with_bmtrain.py
index d543355..ba202c9 100644
--- a/examples/tutorial/2_with_bmtrain.py
+++ b/examples/tutorial/2_with_bmtrain.py
@@ -1,50 +1,291 @@
-import bmtrain as bmt
-import opendelta as od
-from opendelta import LoraModel, AdapterModel, CompacterModel, LowRankAdapterModel, BitFitModel
+# adapted from https://github.com/OpenBMB/ModelCenter/blob/main/examples/bert/finetune_bert.py
+
+import time
+import os
+
import torch
-import numpy
-import random
+import numpy as np
+from sklearn.metrics import accuracy_score, recall_score, f1_score
-def manual_seed(seed):
- torch.manual_seed(seed)
- numpy.random.seed(seed)
- random.seed(seed)
+import bmtrain as bmt
-from model_center.model import Bert, BertConfig
-bmt.init_distributed()
-config = BertConfig.from_pretrained("bert-base-uncased")
-config.dropout_p = 0
-model = Bert.from_pretrained("bert-base-uncased", config)
+from model_center import get_args
+from model_center.model import Bert
+from model_center.tokenizer import BertTokenizer
+from model_center.dataset.bertdataset import DATASET
+from model_center.utils import print_inspect
+from model_center.layer import Linear
+from model_center.dataset import DistributedDataLoader
+import opendelta as od
+from opendelta import LoraModel, AdapterModel, CompacterModel, LowRankAdapterModel, BitFitModel, ParallelAdapterModel
+from opendelta.utils.inspect import inspect_optimizer_statistics
print("before modify")
-od.Visualization(model).structure_graph()
-manual_seed(233)
-delta_model = LoraModel(backbone_model=model, modified_modules=['project_q', 'project_k'])
-# delta_model = AdapterModel(backbone_model=model, modified_modules=['[r]layers\\.(\d)+\\.self_att', '[r]layers\\.(\d)+\\.ffn'])
-# delta_model = CompacterModel(backbone_model=model, modified_modules=['[r]layers\\.(\d)+\\.self_att', '[r]layers\\.(\d)+\\.ffn'])
-# delta_model = LowRankAdapterModel(backbone_model=model, modified_modules=['[r]layers\\.(\d)+\\.self_att', '[r]layers\\.(\d)+\\.ffn'])
-# delta_model = BitFitModel(backbone_model=model, modified_modules=['[r]layers\\.(\d)+\\.self_att', '[r]layers\\.(\d)+\\.ffn', '[r](.*)layernorm(.*)'])
+class BertModel(torch.nn.Module):
+ def __init__(self, args, num_types):
+ super().__init__()
+ self.bert : Bert = Bert.from_pretrained(args.model_config)
+ dim_model = self.bert.input_embedding.dim_model
+ self.dense = Linear(dim_model, num_types)
+ bmt.init_parameters(self.dense)
-# print(delta_model.delta_modules)
+ def forward(self, *args, **kwargs):
+ pooler_output = self.bert(*args, **kwargs, output_pooler_output=True).pooler_output
+ logits = self.dense(pooler_output)
+ return logits
-print("after modify")
-delta_model.log()
-# This will visualize the backbone after modification and other information.
+def get_tokenizer(args):
+ tokenizer = BertTokenizer.from_pretrained(args.model_config)
+ return tokenizer
-delta_model.freeze_module(exclude=["deltas"], set_state_dict=True)
-print("after freeze")
-delta_model.log()
-# The set_state_dict=True will tell the method to change the state_dict of the backbone_model to maintaining only the trainable parts.
+def get_model(args):
+ num_types = {
+ "BoolQ" : 2,
+ "CB" : 3,
+ "COPA" : 1,
+ "RTE" : 2,
+ "WiC" : 2,
+ }
+ model = BertModel(args, num_types[args.dataset_name])
+ od.Visualization(model).structure_graph()
-manual_seed(233)
-inp = torch.randint(0, 30000, (32, 128)).cuda()
-length = torch.randint(0, 128, (32,)).cuda()
-attention_mask = (torch.arange(inp.shape[1], device=inp.device)[None, :].repeat(inp.shape[0], 1) < length[:, None])
-out = model(inp, attention_mask=attention_mask, output_logits=True).logits
-print(out)
-if bmt.rank() == 0:
- torch.save(model.state_dict(), "test.pt")
- ckpt = torch.load("test.pt")
- print(ckpt.keys())
\ No newline at end of file
+ if args.delta_type == "lora":
+ delta_model = LoraModel(backbone_model=model, modified_modules=['project_q', 'project_k'], backend='bmt')
+ elif args.delta_type == "bitfit":
+ delta_model = BitFitModel(backbone_model=model, modified_modules=['self_att', 'ffn', 'layernorm'], backend='bmt') #TODO: fix bug
+ elif args.delta_type == "adapter":
+ delta_model = AdapterModel(backbone_model=model, modified_modules=['self_att', 'ffn'], backend='bmt')
+ elif args.delta_type == "compacter":
+ delta_model = CompacterModel(backbone_model=model, modified_modules=['self_att', 'ffn'], backend='bmt')
+ elif args.delta_type == "low_rank_adapter":
+ delta_model = LowRankAdapterModel(backbone_model=model, modified_modules=['self_att', 'ffn'], backend='bmt')
+ elif args.delta_type == "parallel_adapter":
+ delta_model = ParallelAdapterModel(backbone_model=model, modified_modules=['self_att', 'self_att', 'ffn.ffn', 'ffn.ffn'], backend='bmt')
+
+
+
+ print("after modify")
+ delta_model.log()
+ # This will visualize the backbone after modification and other information.
+
+ delta_model.freeze_module(exclude=["deltas"], set_state_dict=True)
+ print("after freeze")
+ delta_model.log()
+ return model
+
+def get_optimizer(args, model):
+ optimizer = bmt.optim.AdamOffloadOptimizer(model.parameters(), weight_decay=args.weight_decay)
+ return optimizer
+
+def get_learning_rate_scheduler(args, optimizer):
+ if args.lr_decay_iters is None:
+ args.lr_decay_iters = args.train_iters * args.epochs
+ if args.lr_decay_style == "noam":
+ lr_scheduler = bmt.lr_scheduler.Noam(optimizer,
+ start_lr = args.lr,
+ warmup_iter = args.warmup_iters,
+ end_iter = args.lr_decay_iters,
+ num_iter = args.start_step)
+ elif args.lr_decay_style == "constant":
+ lr_scheduler = bmt.lr_scheduler.NoDecay(optimizer,
+ start_lr = args.lr,
+ warmup_iter = args.warmup_iters,
+ end_iter = -1,
+ num_iter = args.start_step)
+ elif args.lr_decay_style == "linear":
+ lr_scheduler = bmt.lr_scheduler.Linear(optimizer,
+ start_lr = args.lr,
+ warmup_iter = args.warmup_iters,
+ end_iter = args.lr_decay_iters,
+ num_iter = args.start_step)
+ elif args.lr_decay_style == "exponential":
+ lr_scheduler = bmt.lr_scheduler.Exponential(optimizer,
+ start_lr = args.lr,
+ warmup_iter = args.warmup_iters,
+ end_iter = args.lr_decay_iters,
+ num_iter = args.start_step)
+ elif args.lr_decay_style == "cosine":
+ lr_scheduler = bmt.lr_scheduler.Cosine(optimizer,
+ start_lr = args.lr,
+ warmup_iter = args.warmup_iters,
+ end_iter = args.lr_decay_iters,
+ num_iter = args.start_step)
+ else:
+ raise ValueError(f"lr_scheduler of type {args.lr_decay_style} is not supported yet.")
+
+ return lr_scheduler
+
+def setup_model_and_optimizer(args):
+ # get the tokenizer
+ tokenizer = get_tokenizer(args)
+ # get the model
+ model = get_model(args)
+ bmt.synchronize()
+ # get the optimizer and lr_scheduler
+ optimizer = get_optimizer(args, model)
+
+ inspect_optimizer_statistics(optimizer)
+ lr_scheduler = get_learning_rate_scheduler(args, optimizer)
+ bmt.synchronize()
+ # get the memory usage
+ bmt.print_rank("Model mem\n", torch.cuda.memory_summary())
+ bmt.synchronize()
+ return tokenizer, model, optimizer, lr_scheduler
+
+def initialize():
+ # get arguments
+ args = get_args()
+ # init bmt
+ bmt.init_distributed(seed = args.seed)
+ # init save folder
+ if args.save != None:
+ os.makedirs(args.save, exist_ok=True)
+ return args
+
+def prepare_dataset(args, tokenizer, base_path, dataset_name, rank, world_size):
+ splits = ['train', 'dev', 'test']
+ dataset = {}
+ for split in splits:
+ dataset[split] = DATASET[dataset_name](base_path, split, rank, world_size, tokenizer, args.max_encoder_length)
+ return dataset
+
+
+def finetune(args, tokenizer, model, optimizer, lr_scheduler, dataset):
+ loss_func = bmt.loss.FusedCrossEntropy(ignore_index=-100)
+
+ optim_manager = bmt.optim.OptimManager(loss_scale=args.loss_scale)
+ optim_manager.add_optimizer(optimizer, lr_scheduler)
+
+ # print_inspect(model, '*') # too much output
+
+ for epoch in range(12):
+ dataloader = {
+ "train": DistributedDataLoader(dataset['train'], batch_size=args.batch_size, shuffle=True),
+ "dev": DistributedDataLoader(dataset['dev'], batch_size=args.batch_size, shuffle=False),
+ }
+
+ model.train()
+ for it, data in enumerate(dataloader['train']):
+ if args.dataset_name == 'COPA':
+ input_ids0 = data["input_ids0"]
+ attention_mask0 = data["attention_mask0"]
+ token_type_ids0 = data["token_type_ids0"]
+ input_ids1 = data["input_ids1"]
+ attention_mask1 = data["attention_mask1"]
+ token_type_ids1 = data["token_type_ids1"]
+ labels = data["labels"]
+ else:
+ input_ids = data["input_ids"]
+ attention_mask = data["attention_mask"]
+ token_type_ids = data["token_type_ids"]
+ labels = data["labels"]
+
+ torch.cuda.synchronize()
+ st_time = time.time()
+
+ if args.dataset_name == 'COPA':
+ logits = torch.cat([
+ model(input_ids0, attention_mask=attention_mask0, token_type_ids=token_type_ids0),
+ model(input_ids1, attention_mask=attention_mask1, token_type_ids=token_type_ids1),
+ ], dim=1)
+ else:
+ logits = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
+ loss = loss_func(logits.view(-1, logits.shape[-1]), labels.view(-1))
+
+ global_loss = bmt.sum_loss(loss).item()
+
+ optim_manager.zero_grad()
+
+ optim_manager.backward(loss)
+ grad_norm = optim_manager.clip_grad_norm(optimizer.param_groups, args.clip_grad, norm_type = 2)
+
+ optim_manager.step()
+
+ torch.cuda.synchronize()
+ elapsed_time = time.time() - st_time
+
+ # from IPython import embed; embed(header="25252")
+
+ bmt.print_rank(
+ "train | epoch {:3d} | Iter: {:6d}/{:6d} | loss: {:.4f} | lr: {:.4e}, scale: {:10.4f} | grad_norm: {:.4f} | time: {:.3f}".format(
+ epoch,
+ it,
+ len(dataloader["train"]),
+ global_loss,
+ lr_scheduler.current_lr,
+ int(optim_manager.loss_scale),
+ grad_norm,
+ elapsed_time,
+ )
+ )
+
+ model.eval()
+ with torch.no_grad():
+ for split in ['dev']:
+ pd = []
+ gt = []
+ for it, data in enumerate(dataloader[split]):
+ if args.dataset_name == 'COPA':
+ input_ids0 = data["input_ids0"]
+ attention_mask0 = data["attention_mask0"]
+ token_type_ids0 = data["token_type_ids0"]
+ input_ids1 = data["input_ids1"]
+ attention_mask1 = data["attention_mask1"]
+ token_type_ids1 = data["token_type_ids1"]
+ labels = data["labels"]
+ logits = torch.cat([
+ model(input_ids0, attention_mask=attention_mask0, token_type_ids=token_type_ids0),
+ model(input_ids1, attention_mask=attention_mask1, token_type_ids=token_type_ids1),
+ ], dim=1)
+ else:
+ input_ids = data["input_ids"]
+ attention_mask = data["attention_mask"]
+ token_type_ids = data["token_type_ids"]
+ labels = data["labels"]
+ logits = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
+
+ loss = loss_func(logits.view(-1, logits.shape[-1]), labels.view(-1))
+ logits = logits.argmax(dim=-1)
+ pd.extend(logits.cpu().tolist())
+ gt.extend(labels.cpu().tolist())
+
+ bmt.print_rank(
+ "{} | epoch {:3d} | Iter: {:6d}/{:6d} | loss: {:.4f}".format(
+ split,
+ epoch,
+ it,
+ len(dataloader[split]),
+ loss,
+ )
+ )
+
+ pd = bmt.gather_result(torch.tensor(pd).int()).cpu().tolist()
+ gt = bmt.gather_result(torch.tensor(gt).int()).cpu().tolist()
+
+ bmt.print_rank(f"{split} epoch {epoch}:")
+ if args.dataset_name in ["BoolQ", "CB", "COPA", "RTE", "WiC", "WSC"]:
+ acc = accuracy_score(gt, pd)
+ bmt.print_rank(f"accuracy: {acc*100:.2f}")
+ if args.dataset_name in ["CB"]:
+ rcl = f1_score(gt, pd, average="macro")
+ f1 = recall_score(gt, pd, average="macro")
+ bmt.print_rank(f"recall: {rcl*100:.2f}")
+ bmt.print_rank(f"Average F1: {f1*100:.2f}")
+
+
+def main():
+ args = initialize()
+ tokenizer, model, optimizer, lr_scheduler = setup_model_and_optimizer(args)
+ dataset = prepare_dataset(
+ args,
+ tokenizer,
+ f"{args.base_path}/down_data/superglue/",
+ args.dataset_name,
+ bmt.rank(), bmt.world_size(),
+ )
+ finetune(args, tokenizer, model, optimizer, lr_scheduler, dataset)
+
+if __name__ == "__main__":
+ main()
\ No newline at end of file
diff --git a/examples/tutorial/2_with_bmtrain.sh b/examples/tutorial/2_with_bmtrain.sh
index 0a5b3bc..f25013d 100644
--- a/examples/tutorial/2_with_bmtrain.sh
+++ b/examples/tutorial/2_with_bmtrain.sh
@@ -1 +1,37 @@
-python3 -m torch.distributed.launch --master_addr localhost --master_port 34123 --nproc_per_node $1 --nnodes 1 --node_rank 0 2_with_bmtrain.py
+#! /bin/bash
+
+MASTER_ADDR=localhost
+MASTER_PORT=12345
+NNODES=1
+NODE_RANK=0
+GPUS_PER_NODE=4
+
+DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE \
+ --nnodes $NNODES \
+ --node_rank $NODE_RANK \
+ --master_addr $MASTER_ADDR \
+ --master_port $MASTER_PORT"
+
+BASE_PATH="./"
+VERSION="bert-large-cased"
+DATASET="BoolQ" # You can try other dataset listed in https://github.com/OpenBMB/ModelCenter/tree/main/examples/bert
+
+OPTS=""
+OPTS+=" --model-config ${VERSION}"
+OPTS+=" --base-path ${BASE_PATH}"
+OPTS+=" --dataset_name ${DATASET}"
+OPTS+=" --batch-size 64"
+OPTS+=" --lr 0.001" # You can use different learning rate to find optimal performance
+OPTS+=" --max-encoder-length 512"
+OPTS+=" --train-iters 1400"
+OPTS+=" --lr-decay-style constant"
+OPTS+=" --weight-decay 1e-2"
+OPTS+=" --clip-grad 10.0"
+OPTS+=" --loss-scale 128"
+OPTS+=" --delta_type low_rank_adapter" # You can use different delta type, listed in https://opendelta.readthedocs.io/en/latest/notes/acceleration.html#BMTrain
+
+CMD="python3 -m torch.distributed.launch ${DISTRIBUTED_ARGS} ${BASE_PATH}2_with_bmtrain.py ${OPTS}"
+echo ${CMD}
+
+${CMD} 2>&1 | tee ${BASE_PATH}/tmp/logs/bmt_bert_boolq_finetune-${VERSION}-${DATASET}.log
+
diff --git a/examples/tutorial/README.md b/examples/tutorial/README.md
index 815a114..e0f2a6e 100644
--- a/examples/tutorial/README.md
+++ b/examples/tutorial/README.md
@@ -13,4 +13,23 @@ requirement:
```
pip install openprompt
-```
\ No newline at end of file
+```
+
+## 2_with_bmtrain.py
+1. install necessary packages:
+```
+pip install git+https://github.com/OpenBMB/BMTrain.git
+pip install git+git@github.com:OpenBMB/ModelCenter.git
+```
+2. download dataset from https://super.gluebenchmark.com/tasks, e.g.,
+```
+mkdir down_data
+cd down_data
+wget https://dl.fbaipublicfiles.com/glue/superglue/data/v2/BoolQ.zip
+unzip BoolQ.zip
+```
+3. Run the shell scripts, change `NNODES`,`GPUS_PER_NODE` according to your computational resources.
+```
+bash 2_with_bmtrain.sh
+```
+
diff --git a/examples/unittest/must_try.py b/examples/unittest/must_try.py
index 1837a75..8448e41 100644
--- a/examples/unittest/must_try.py
+++ b/examples/unittest/must_try.py
@@ -67,6 +67,16 @@ delta2.detach()
# say we add lora to the last four layer of the decoder of t5, with lora rank=5
delta_config3 = AutoDeltaConfig.from_dict({"delta_type":"lora", "modified_modules":["[r]decoder.*((20)|(21)|(22)|(23)).*DenseReluDense\.wi"], "lora_r":5})
delta3 = AutoDeltaModel.from_config(delta_config3, backbone_model=wrapped_model)
+delta3.freeze_module()
delta3.log()
+# add optimizer as normal
+from transformers import AdamW
+optimizer = AdamW(wrapped_model.parameters(), lr=3e-3)
+
+# inspect_optimizer
+from opendelta.utils.inspect import inspect_optimizer_statistics
+inspect_optimizer_statistics(optimizer)
+
+
diff --git a/examples/unittest/test_bmtrain.py b/examples/unittest/test_bmtrain.py
deleted file mode 100644
index 9096fe4..0000000
--- a/examples/unittest/test_bmtrain.py
+++ /dev/null
@@ -1,255 +0,0 @@
-import time
-import os
-
-import torch
-import numpy as np
-from sklearn.metrics import accuracy_score, recall_score, f1_score
-
-import bmtrain as bmt
-
-from model_center import get_args
-from model_center.model import Bert
-from model_center.tokenizer import BertTokenizer
-from model_center.dataset.bertdataset import DATASET
-from model_center.utils import print_inspect
-from model_center.layer import Linear
-from model_center.dataset import DistributedDataLoader
-
-class BertModel(torch.nn.Module):
- def __init__(self, args, num_types):
- super().__init__()
- self.bert : Bert = Bert.from_pretrained(args.model_config)
- dim_model = self.bert.input_embedding.dim_model
- self.dense = Linear(dim_model, num_types)
- bmt.init_parameters(self.dense)
-
- def forward(self, *args, **kwargs):
- pooler_output = self.bert(*args, **kwargs, output_pooler_output=True).pooler_output
- logits = self.dense(pooler_output)
- return logits
-
-def get_tokenizer(args):
- tokenizer = BertTokenizer.from_pretrained(args.model_config)
- return tokenizer
-
-def get_model(args):
- num_types = {
- "BoolQ" : 2,
- "CB" : 3,
- "COPA" : 1,
- "RTE" : 2,
- "WiC" : 2,
- }
- model = BertModel(args, num_types[args.dataset_name])
- return model
-
-def get_optimizer(args, model):
- optimizer = bmt.optim.AdamOffloadOptimizer(model.parameters(), weight_decay=args.weight_decay)
- return optimizer
-
-def get_learning_rate_scheduler(args, optimizer):
- if args.lr_decay_iters is None:
- args.lr_decay_iters = args.train_iters * args.epochs
- if args.lr_decay_style == "noam":
- lr_scheduler = bmt.lr_scheduler.Noam(optimizer,
- start_lr = args.lr,
- warmup_iter = args.warmup_iters,
- end_iter = args.lr_decay_iters,
- num_iter = args.start_step)
- elif args.lr_decay_style == "constant":
- lr_scheduler = bmt.lr_scheduler.NoDecay(optimizer,
- start_lr = args.lr,
- warmup_iter = args.warmup_iters,
- end_iter = -1,
- num_iter = args.start_step)
- elif args.lr_decay_style == "linear":
- lr_scheduler = bmt.lr_scheduler.Linear(optimizer,
- start_lr = args.lr,
- warmup_iter = args.warmup_iters,
- end_iter = args.lr_decay_iters,
- num_iter = args.start_step)
- elif args.lr_decay_style == "exponential":
- lr_scheduler = bmt.lr_scheduler.Exponential(optimizer,
- start_lr = args.lr,
- warmup_iter = args.warmup_iters,
- end_iter = args.lr_decay_iters,
- num_iter = args.start_step)
- elif args.lr_decay_style == "cosine":
- lr_scheduler = bmt.lr_scheduler.Cosine(optimizer,
- start_lr = args.lr,
- warmup_iter = args.warmup_iters,
- end_iter = args.lr_decay_iters,
- num_iter = args.start_step)
- else:
- raise ValueError(f"lr_scheduler of type {args.lr_decay_style} is not supported yet.")
-
- return lr_scheduler
-
-def setup_model_and_optimizer(args):
- # get the tokenizer
- tokenizer = get_tokenizer(args)
- # get the model
- model = get_model(args)
- bmt.synchronize()
- # get the optimizer and lr_scheduler
- optimizer = get_optimizer(args, model)
- lr_scheduler = get_learning_rate_scheduler(args, optimizer)
- bmt.synchronize()
- # get the memory usage
- bmt.print_rank("Model mem\n", torch.cuda.memory_summary())
- bmt.synchronize()
- return tokenizer, model, optimizer, lr_scheduler
-
-def initialize():
- # get arguments
- args = get_args()
- # init bmt
- bmt.init_distributed(seed = args.seed)
- # init save folder
- if args.save != None:
- os.makedirs(args.save, exist_ok=True)
- return args
-
-def prepare_dataset(args, tokenizer, base_path, dataset_name, rank, world_size):
- splits = ['train', 'dev', 'test']
- dataset = {}
- for split in splits:
- dataset[split] = DATASET[dataset_name](base_path, split, rank, world_size, tokenizer, args.max_encoder_length)
- return dataset
-
-
-def finetune(args, tokenizer, model, optimizer, lr_scheduler, dataset):
- loss_func = bmt.loss.FusedCrossEntropy(ignore_index=-100)
-
- optim_manager = bmt.optim.OptimManager(loss_scale=args.loss_scale)
- optim_manager.add_optimizer(optimizer, lr_scheduler)
-
- print_inspect(model, '*')
-
- for epoch in range(12):
- dataloader = {
- "train": DistributedDataLoader(dataset['train'], batch_size=args.batch_size, shuffle=True),
- "dev": DistributedDataLoader(dataset['dev'], batch_size=args.batch_size, shuffle=False),
- }
-
- model.train()
- for it, data in enumerate(dataloader['train']):
- if args.dataset_name == 'COPA':
- input_ids0 = data["input_ids0"]
- attention_mask0 = data["attention_mask0"]
- token_type_ids0 = data["token_type_ids0"]
- input_ids1 = data["input_ids1"]
- attention_mask1 = data["attention_mask1"]
- token_type_ids1 = data["token_type_ids1"]
- labels = data["labels"]
- else:
- input_ids = data["input_ids"]
- attention_mask = data["attention_mask"]
- token_type_ids = data["token_type_ids"]
- labels = data["labels"]
-
- torch.cuda.synchronize()
- st_time = time.time()
-
- if args.dataset_name == 'COPA':
- logits = torch.cat([
- model(input_ids0, attention_mask=attention_mask0, token_type_ids=token_type_ids0),
- model(input_ids1, attention_mask=attention_mask1, token_type_ids=token_type_ids1),
- ], dim=1)
- else:
- logits = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
- loss = loss_func(logits.view(-1, logits.shape[-1]), labels.view(-1))
-
- global_loss = bmt.sum_loss(loss).item()
-
- optim_manager.zero_grad()
-
- optim_manager.backward(loss)
- grad_norm = optim_manager.clip_grad_norm(optimizer.param_groups, args.clip_grad, norm_type = 2)
-
- optim_manager.step()
-
- torch.cuda.synchronize()
- elapsed_time = time.time() - st_time
-
- bmt.print_rank(
- "train | epoch {:3d} | Iter: {:6d}/{:6d} | loss: {:.4f} | lr: {:.4e}, scale: {:10.4f} | grad_norm: {:.4f} | time: {:.3f}".format(
- epoch,
- it,
- len(dataloader["train"]),
- global_loss,
- lr_scheduler.current_lr,
- int(optim_manager.loss_scale),
- grad_norm,
- elapsed_time,
- )
- )
-
- model.eval()
- with torch.no_grad():
- for split in ['dev']:
- pd = []
- gt = []
- for it, data in enumerate(dataloader[split]):
- if args.dataset_name == 'COPA':
- input_ids0 = data["input_ids0"]
- attention_mask0 = data["attention_mask0"]
- token_type_ids0 = data["token_type_ids0"]
- input_ids1 = data["input_ids1"]
- attention_mask1 = data["attention_mask1"]
- token_type_ids1 = data["token_type_ids1"]
- labels = data["labels"]
- logits = torch.cat([
- model(input_ids0, attention_mask=attention_mask0, token_type_ids=token_type_ids0),
- model(input_ids1, attention_mask=attention_mask1, token_type_ids=token_type_ids1),
- ], dim=1)
- else:
- input_ids = data["input_ids"]
- attention_mask = data["attention_mask"]
- token_type_ids = data["token_type_ids"]
- labels = data["labels"]
- logits = model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
-
- loss = loss_func(logits.view(-1, logits.shape[-1]), labels.view(-1))
- logits = logits.argmax(dim=-1)
- pd.extend(logits.cpu().tolist())
- gt.extend(labels.cpu().tolist())
-
- bmt.print_rank(
- "{} | epoch {:3d} | Iter: {:6d}/{:6d} | loss: {:.4f}".format(
- split,
- epoch,
- it,
- len(dataloader[split]),
- loss,
- )
- )
-
- pd = bmt.gather_result(torch.tensor(pd).int()).cpu().tolist()
- gt = bmt.gather_result(torch.tensor(gt).int()).cpu().tolist()
-
- bmt.print_rank(f"{split} epoch {epoch}:")
- if args.dataset_name in ["BoolQ", "CB", "COPA", "RTE", "WiC", "WSC"]:
- acc = accuracy_score(gt, pd)
- bmt.print_rank(f"accuracy: {acc*100:.2f}")
- if args.dataset_name in ["CB"]:
- rcl = f1_score(gt, pd, average="macro")
- f1 = recall_score(gt, pd, average="macro")
- bmt.print_rank(f"recall: {rcl*100:.2f}")
- bmt.print_rank(f"Average F1: {f1*100:.2f}")
-
-
-def main():
- args = initialize()
- tokenizer, model, optimizer, lr_scheduler = setup_model_and_optimizer(args)
- dataset = prepare_dataset(
- args,
- tokenizer,
- f"{args.base_path}/down_data/superglue/",
- args.dataset_name,
- bmt.rank(), bmt.world_size(),
- )
- finetune(args, tokenizer, model, optimizer, lr_scheduler, dataset)
-
-if __name__ == "__main__":
- main()
\ No newline at end of file
diff --git a/opendelta/__init__.py b/opendelta/__init__.py
index 431cfa1..1127d70 100644
--- a/opendelta/__init__.py
+++ b/opendelta/__init__.py
@@ -21,6 +21,7 @@ from .delta_models.adapter import AdapterModel
from .delta_models.prefix import PrefixModel
from .delta_models.soft_prompt import SoftPromptModel
from .delta_models.low_rank_adapter import LowRankAdapterModel
+from .delta_models.parallel_adapter import ParallelAdapterModel
from .utils.visualization import Visualization
diff --git a/opendelta/basemodel.py b/opendelta/basemodel.py
index 27ff96d..cd1006b 100644
--- a/opendelta/basemodel.py
+++ b/opendelta/basemodel.py
@@ -5,6 +5,7 @@ from multiprocessing.sharedctypes import Value
import os
from turtle import back
from opendelta.delta_configs import BaseDeltaConfig
+from opendelta.utils.inspect import inspect_module_statistics
from opendelta.utils.model_md5 import gen_model_hash
from opendelta.utils.signature import get_arg_names, signature
from typing import Optional, Union
@@ -27,6 +28,7 @@ from opendelta.utils.cuda import move_dict_to_cuda
import sys
from opendelta.utils.data_parallel import caller_map
+from opendelta.utils.backend import BackendMapping
logger = logging.get_logger(__name__)
def is_leaf_module(module):
@@ -94,6 +96,7 @@ class DeltaBase(nn.Module, SaveLoadMixin):
config_class = BaseDeltaConfig
default_unfrozen_modules = ["deltas"]
_need_pseudo_data = True
+ _supported_backends = ['hf']
def __init__(self,
backbone_model: nn.Module,
modified_modules: Optional[List[str]] = None,
@@ -101,7 +104,7 @@ class DeltaBase(nn.Module, SaveLoadMixin):
unfrozen_modules: Optional[List[str]] = None,
interactive_modify: Optional[Union[bool, int]] = False,
common_structure: Optional[bool] = False,
- framework_type: Optional[str]= "hf", # select from ["hf", "bmt"]
+ backend: Optional[str]= "hf", # select from ["hf", "bmt"]
):
nn.Module.__init__(self)
# register the backbone model after init using self.__dict__ method to avoid adding backbone_model
@@ -139,7 +142,10 @@ class DeltaBase(nn.Module, SaveLoadMixin):
self.unfrozen_modules = self.default_unfrozen_modules
if self.common_structure and self.structure_mapping is None:
raise RuntimeError("Using common structure but the structure mapping is None")
- self.framework_type = framework_type
+ if backend not in self._supported_backends:
+ raise RuntimeError("Currently, backend `{}` is not supported for `{}`".format(backend, self.__class__.__name__))
+ self.backend = backend
+ self.backend_mapping = BackendMapping(backend)
def forward(self, *args, **kwargs) -> RuntimeError:
r"""
@@ -371,10 +377,11 @@ class DeltaBase(nn.Module, SaveLoadMixin):
_auto_dummy_fail = False
try:
module(**dummy_inputs)
- except:
+ except Exception as e:
_auto_dummy_fail = True
- if _auto_dummy_fail:
- raise AttributeError(f"\n\tThe {self.__class__.__name__} requires a dummy_inputs to be passed through the model to understand the dimensionality of each tensor in the computation graph. \n\t The {module.__class__.__name__} Class has no dummy_inputs, and automatically created dummy_inputs failed.\n\t Refer to `https://opendelta.readthedocs.io/en/latest/notes/faq.html` for detail.")
+
+ if _auto_dummy_fail and _auto_dummy:
+ raise AttributeError(f"str({e})\n\tThe {self.__class__.__name__} requires a dummy_inputs to be passed through the model to understand the dimensionality of each tensor in the computation graph. \n\t The {module.__class__.__name__} Class has no dummy_inputs, and automatically created dummy_inputs failed.\n\t Refer to `https://opendelta.readthedocs.io/en/latest/notes/faq.html` for detail.")
@@ -684,65 +691,16 @@ class DeltaBase(nn.Module, SaveLoadMixin):
from opendelta import Visualization
Visualization(module).structure_graph()
- self.get_statistics(module)
+ self.stat = inspect_module_statistics(module, verbose=False)
if trainable_ratio:
- logger.info("Trainable Ratio: {:2f}%".format(self.stat['trainable_ratio']*100))
+ logger.info("Trainable Ratio: {}/{}={:.6f}%".format(self.stat['trainable_parameters'], self.stat['total_parameters'], self.stat['trainable_ratio']*100))
if delta_ratio:
- logger.info("Delta Parameter Ratio: {:2f}%".format(self.stat['delta_ratio']*100))
+ logger.info("Delta Parameter Ratio: {}/{}={:.6f}%".format(self.stat['delta_parameters'], self.stat['total_parameters'],self.stat['delta_ratio']*100))
if cuda_memory:
logger.info("Static Memory {:.2f} GB, Max Memory {:.2f} GB".format(self.stat['cudamem'], self.stat['maxcudamem']))
- def get_statistics(self, module=None):
- r"""Get the statistics of the parameters in the delta modules.
- Args:
- module (:obj:`nn.Module`, *optional*): The module to compute the statistics.
-
- Returns:
- :obj:`dict`: The statistics of the parameters in the delta modules.
-
- """
- if module is None:
- module = self.backbone_model
-
- self.stat = {}
- n_trainable = self.num_trainable_parameters(module)
- n_total = self.num_total_parameters(module)
-
- self.stat['trainable_ratio'] = n_trainable/n_total
-
- n_delta = self.num_delta_parameters(module)
- n_total = self.num_total_parameters(module)
- self.stat['delta_ratio'] = n_delta/n_total
-
- cudamem = 0
- maxcudamem = 0
- for device_id in range(torch.cuda.device_count()):
- cudamem += torch.cuda.memory_allocated(f"cuda:{device_id}")/1024**3
- maxcudamem += torch.cuda.max_memory_allocated(f"cuda:{device_id}")/1024**3
- self.stat['cudamem'] = cudamem
- self.stat['maxcudamem'] = maxcudamem
-
-
-
- def num_delta_parameters(self, module: Optional[nn.Module]=None):
- r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to
- compute the trainable rate.
-
- Args:
- module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters.
-
- Returns:
- :obj:`List[nn.Parameter]`
- """
- if module is None:
- module = self.backbone_model
- pnum_tot = 0
- for param in module.parameters():
- if hasattr(param, "_is_delta"):
- pnum_tot += param.numel()
- return pnum_tot
# Two functions for plug and remove the delta model.
def attach(self, module: Optional[nn.Module]=None, reset_state_dict=True):
diff --git a/opendelta/delta_models/adapter.py b/opendelta/delta_models/adapter.py
index bbb8bb4..4f191b4 100644
--- a/opendelta/delta_models/adapter.py
+++ b/opendelta/delta_models/adapter.py
@@ -60,13 +60,14 @@ class AdapterLayer(nn.Module, InterFaceMixin):
def get_layer_count(cls):
return cls.layer_count
- def __init__(self, bottleneck_dim=24, non_linearity='gelu_new', device=None):
+ def __init__(self, bottleneck_dim=24, non_linearity='gelu_new', device=None, backend="hf"):
super().__init__()
InterFaceMixin.__init__(self)
self.bottleneck_dim = bottleneck_dim
self.init_device = device
self.instantiated = False
self.non_linearity = non_linearity
+ self.backend=backend
self.layer_id = AdapterLayer.get_layer_count()
AdapterLayer.count_layer()
@@ -79,14 +80,16 @@ class AdapterLayer(nn.Module, InterFaceMixin):
else:
return self.init_device
- def instantiate(self, hidden_dim):
+ def instantiate(self, hiddens):
+ self.hidden_dim = hiddens.shape[-1]
+ self.hidden_dtype = hiddens.dtype
self.modulelist = nn.Sequential()
- self.modulelist.add_module("down_proj",nn.Linear(hidden_dim, self.bottleneck_dim, device=self.init_device))
+ self.modulelist.add_module("down_proj",nn.Linear(self.hidden_dim, self.bottleneck_dim, device=self.init_device, dtype=self.hidden_dtype))
# select non-linearity
self.modulelist.add_module("non_linear", Activations(self.non_linearity.lower()))
- self.modulelist.add_module("up_proj", nn.Linear(self.bottleneck_dim, self.hidden_dim, device=self.init_device))
+ self.modulelist.add_module("up_proj", nn.Linear(self.bottleneck_dim, self.hidden_dim, device=self.init_device, dtype=self.hidden_dtype))
# TODO:
# If we want to have a layer norm on output, we apply it later after a separate residual connection
@@ -97,11 +100,9 @@ class AdapterLayer(nn.Module, InterFaceMixin):
self.instantiated = True
# initialize the weight, which is important for fast convergence and better performance.
self.apply(self._init_weight)
- try:
+ if self.backend == 'bmt':
import bmtrain as bmt
self.modulelist = bmt.BMTrainModelWrapper(self.modulelist)
- except:
- pass
def _init_weight(self, module):
if isinstance(module, nn.Linear):
@@ -123,19 +124,29 @@ class AdapterLayer(nn.Module, InterFaceMixin):
raise TypeError
hiddens = self._transpose(hiddens)
- hiddens = self._convert_data_type(hiddens)
+ # if self.backend == 'hf':
+ # hiddens = self._convert_data_type(hiddens)
+ # elif self.backend == 'bmt': # if bmt, left the convertion to bmt
+ # pass
if not self.instantiated:
- self.hidden_dim = hiddens.shape[-1]
- logger.debug(f"Got hidden dim hidden_dim {self.hidden_dim}")
- self.instantiate(hidden_dim=self.hidden_dim)
-
+ # self.hidden_dim = hiddens.shape[-1]
+ # logger.debug(f"Got hidden dim hidden_dim {self.hidden_dim}")
+ self.instantiate(hiddens=hiddens)
+ # from IPython import embed; embed(header="14135315")
adapter_output = self.modulelist(hiddens)
modified_output = adapter_output + hiddens # TODO option: disable residual_connection
modified_output = self._reverse_transpose(modified_output)
- modified_output = self._reverse_data_type(modified_output)
+
+ # if self.backend == 'hf':
+ # # print("!"*100)
+ # modified_output = self._reverse_data_type(modified_output)
+ # elif self.backend == 'bmt': # if bmt, left the convertion to bmt
+ # print("!"*100)
+ # pass
+
if isinstance(output, tuple):
output = (modified_output,) + output[1:]
@@ -189,20 +200,24 @@ class AdapterModel(DeltaBase):
modified_modules (:obj:`List[str]`): modules to add adapter after them.
unfrozen_modules (:obj:`List[str]`, *optional*, default to :obj:`None`): The modules that should be unfrozen together with the adapter parameters.
common_structure (:obj:`bool`): whether using name-based addressing witha common structure mapping.
+ backend (:obj:`str`): choose the backend of plm, 'hf' for huggingface transformers,'bmt' for bmtrain.
"""
config_class = AdapterConfig
delta_type = "adapter"
default_modified_modules = ["attn@.proj@", "ff@.w2@"]
+ _supported_backends = ['hf', 'bmt']
_need_pseudo_data = True
def __init__(self,
backbone_model: nn.Module,
bottleneck_dim: Optional[int]=24,
non_linearity: Optional[str]='gelu_new',
- modified_modules: Optional[bool] = None,
+ modified_modules: Optional[List[str]] = None,
+ exclude_modules: Optional[List[str]] = None,
unfrozen_modules: Optional[bool] = None,
common_structure: Optional[bool] = None,
interactive_modify: Optional[Union[bool, int]] = False,
+ backend: Optional[str] = 'hf',
):
DeltaBase.__init__(self,
backbone_model,
@@ -211,6 +226,7 @@ class AdapterModel(DeltaBase):
unfrozen_modules=unfrozen_modules,
common_structure=common_structure,
interactive_modify=interactive_modify,
+ backend=backend,
)
arg_names = get_arg_names_inside_func(self.__init__)
for arg_name in arg_names:
@@ -231,6 +247,6 @@ class AdapterModel(DeltaBase):
def new_module_like(self, module):
module_device = get_device(module)
- adapterlayer = AdapterLayer(bottleneck_dim=self.bottleneck_dim, non_linearity=self.non_linearity, device=module_device)
+ adapterlayer = AdapterLayer(bottleneck_dim=self.bottleneck_dim, non_linearity=self.non_linearity, device=module_device, backend=self.backend)
self.delta_modules.append(adapterlayer)
return adapterlayer
diff --git a/opendelta/delta_models/bitfit.py b/opendelta/delta_models/bitfit.py
index 8d26997..9d89548 100644
--- a/opendelta/delta_models/bitfit.py
+++ b/opendelta/delta_models/bitfit.py
@@ -75,16 +75,6 @@ class BiasLayer(nn.Module):
raise TypeError
return output
-framework_map = {}
-framework_map['hf'] = {
- "linear": nn.Linear,
- "layer_norm": nn.LayerNorm,
-}
-
-framework_map['bmt'] = {
- "linear": model_center.layer.Linear,
- "layer_norm", model_center.layer.LayerNorm,
-}
class BitFitModel(DeltaBase):
@@ -124,6 +114,7 @@ class BitFitModel(DeltaBase):
config_class = BitFitConfig
delta_type = "bitfit"
default_modified_modules = ["attn@", "ff@", "layer_norm@","lm_head@.proj@"] # modify all the bias parameter in attention and feed-forward layer.
+ _supported_backends = ['hf']
_need_pseudo_data = False
def __init__(self,
backbone_model: nn.Module,
@@ -132,7 +123,7 @@ class BitFitModel(DeltaBase):
unfrozen_modules: Optional[List[str]] = None,
common_structure: Optional[bool] = None,
interactive_modify: Optional[Union[bool, int]] = False,
- framework_type: Optional[str] = "hf",
+ backend: Optional[str] = "hf",
):
DeltaBase.__init__(self,
backbone_model,
@@ -141,7 +132,7 @@ class BitFitModel(DeltaBase):
unfrozen_modules=unfrozen_modules,
common_structure=common_structure,
interactive_modify=interactive_modify,
- framework_type=framework_type,
+ backend=backend,
)
arg_names = get_arg_names_inside_func(self.__init__)
for arg_name in arg_names:
@@ -153,6 +144,8 @@ class BitFitModel(DeltaBase):
self.add_all_delta_to_backbone(self.backbone_model,
self.modified_modules)
+
+
def update_module(self, module: nn.Module, key: str):
@@ -167,7 +160,8 @@ class BitFitModel(DeltaBase):
# if it is a leaf module, add bias to it regardless of its type.
# if self.check_linear(module):
# self.add_bias_to_linear(module)
- if self.check_linear(module) or self.check_layernorm(module, nn.LayerNorm):
+ if self.backend_mapping.check_type(module, 'linear') or \
+ self.backend_mapping.check_type(module, 'layer_norm'):
self.add_bias_to_modules_have_bias_or_known_type(module)
else:
# for example, layer_norms, lm_heads.
@@ -202,48 +196,27 @@ class BitFitModel(DeltaBase):
c.bias.requires_grad = True
self.delta_params.append(c.bias)
else:
- if self.check_linear(c) or isinstance(c): # todo: bmt layerNorm
+ if self.backend_mapping.check_type(c, 'linear') or \
+ self.backend_mapping.check_type(c, 'layer_norm'):
bias = nn.Parameter(torch.empty(c.out_features), requires_grad=True)
- self._reset_bias_parameters(c) #?
- try:
+ self._reset_bias_parameters(c)
+ if self.backend == 'bmt':
import bmtrain as bmt
bias = bmt.BMTrainModelWrapper(bias)
- except:
- pass
+
c.register_parameter('bias', bias)
self.delta_params.append(bias)
- def add_bias_to_others(self, c): # todo: bmtrain?
- new_bias = BiasLayer(dtype=get_dtype(c), device=get_device(c))
+ def add_bias_to_others(self, c):
+ new_bias = BiasLayer(dtype=get_dtype(c), device=get_device(c)) # TODO: bmtrain?
+ if self.backend == 'bmt':
+ import bmtrain as bmt
+ new_bias = bmt.BMTrainModelWrapper(new_bias)
+
self.insert_sequential_module(c, delta_module=new_bias, delta_name="bitfit") # name shouldn't be `bias` here, since the name `bias` is reserved for some module such as roberta's LayerNorm.
self.delta_modules.append(new_bias)
- def check_linear(self, m):
- if isinstance(m, nn.Linear):
- return True
- else:
- try:
- from model_center.layer import Linear
- if isinstance(m, Linear):
- return True
- except:
- pass
- return False
-
- def check_layernorm(self, m):
- if isinstance(m, nn.LayerNorm):
- return True
- else:
- try:
- from model_center.layer import LayerNorm
- if isinstance(m, LayerNorm):
- return True
- except:
- pass
- return False
-
-
@staticmethod
def _reset_bias_parameters(linear_module):
fan_in, _ = init._calculate_fan_in_and_fan_out(linear_module.weight)
diff --git a/opendelta/delta_models/compacter.py b/opendelta/delta_models/compacter.py
index ca88bf2..9743aca 100644
--- a/opendelta/delta_models/compacter.py
+++ b/opendelta/delta_models/compacter.py
@@ -36,6 +36,7 @@ class HyperComplexAdapterLayer(nn.Module):
device=None,
use_bias_up_sampler=True,
use_bias_down_sampler=True,
+ backend = 'hf',
):
super().__init__()
self.reduction_factor = reduction_factor
@@ -55,14 +56,17 @@ class HyperComplexAdapterLayer(nn.Module):
self.use_bias_up_sampler=use_bias_up_sampler
self.use_bias_down_sampler=use_bias_down_sampler
self.device = device
+ self.backend = backend
self.instantiated = False
- def instantiate(self, hidden_dim):
- self.down_sample_size = hidden_dim // self.reduction_factor
+ def instantiate(self, hiddens):
+ self.hidden_dim = hiddens.shape[-1]
+ self.hidden_dtype = hiddens.dtype
+ self.down_sample_size = self.hidden_dim // self.reduction_factor
self.activation = Activations(self.non_linearity.lower()).to(self.device)
- self.down_sampler = PHMLinear(in_features=hidden_dim,
+ self.down_sampler = PHMLinear(in_features=self.hidden_dim,
out_features=self.down_sample_size,
bias=self.use_bias_down_sampler,
c_init=self.phm_c_init,
@@ -76,9 +80,10 @@ class HyperComplexAdapterLayer(nn.Module):
factorized_phm_rule=self.factorized_phm_rule,
phm_rank=self.phm_rank,
phm_init_range=self.phm_init_range,
- kronecker_prod=self.kronecker_prod).to(self.device)
+ kronecker_prod=self.kronecker_prod,
+ dtype = self.hidden_dtype).to(self.device)
self.up_sampler = PHMLinear(in_features=self.down_sample_size,
- out_features=hidden_dim,
+ out_features=self.hidden_dim,
bias=self.use_bias_up_sampler,
c_init=self.phm_c_init,
phm_dim=self.hypercomplex_division,
@@ -91,15 +96,14 @@ class HyperComplexAdapterLayer(nn.Module):
factorized_phm_rule=self.factorized_phm_rule,
phm_rank=self.phm_rank,
phm_init_range=self.phm_init_range,
- kronecker_prod=self.kronecker_prod).to(self.device)
+ kronecker_prod=self.kronecker_prod,
+ dtype = self.hidden_dtype).to(self.device)
self.instantiated = True
- try:
+ if self.backend == "bmt":
import bmtrain as bmt
self.activation = bmt.BMTrainModelWrapper(self.activation)
self.down_sampler = bmt.BMTrainModelWrapper(self.down_sampler)
self.up_sampler = bmt.BMTrainModelWrapper(self.up_sampler)
- except:
- pass
def post_forward(self, output):
@@ -116,9 +120,7 @@ class HyperComplexAdapterLayer(nn.Module):
raise TypeError
if not self.instantiated:
- self.hidden_dim = hiddens.shape[-1]
- logger.debug(f"Got hidden dim hidden_dim {self.hidden_dim}")
- self.instantiate(hidden_dim=self.hidden_dim)
+ self.instantiate(hiddens=hiddens)
z = self.down_sampler(hiddens)
@@ -193,6 +195,7 @@ class CompacterModel(DeltaBase):
unfrozen_modules (:obj:`List[str]`, *optional*, default to :obj:`None`): The modules that should be unfrozen
together with the prefix parameters.
common_structure (:obj:`bool`, *optional*, default to :obj:`None`): whether using name-based addressing with a common structure mapping.
+ backend (:obj:`str`): choose the backend of plm, 'hf' for huggingface transformers,'bmt' for bmtrain
reduction_factor (:obj:`int`, *optional*, default to ``16``): bottleneck_dim = hidden_dim//reduction_factor
non_linearity (:obj:`str`, *optional*, default to ``"gelu_new"``): The non linearity activation used in between the down
projecter and the up projecter.
@@ -218,6 +221,7 @@ class CompacterModel(DeltaBase):
config_class = CompacterConfig
delta_type = "compacter"
default_modified_modules = ["attn@.proj@", "ff@.w2@"]
+ _supported_backends = ['hf', 'bmt']
_need_pseudo_data = True
def __init__(self,
backbone_model,
@@ -226,6 +230,7 @@ class CompacterModel(DeltaBase):
unfrozen_modules: Optional[List[str]] = None,
common_structure: Optional[bool] = None,
interactive_modify: Optional[Union[bool, int]] = False,
+ backend: Optional[str] = 'hf',
reduction_factor=16,
non_linearity="gelu_new",
phm_c_init="normal",
@@ -288,22 +293,6 @@ class CompacterModel(DeltaBase):
def new_module_like(self, module):
module_device = get_device(module)
- adapterlayer = HyperComplexAdapterLayer(reduction_factor=self.reduction_factor,
- non_linearity=self.non_linearity,
- phm_c_init=self.phm_c_init,
- hypercomplex_division=self.hypercomplex_division,
- learn_phm=self.learn_phm,
- hypercomplex_nonlinearity=self.hypercomplex_nonlinearity,
- shared_phm_rule=self.shared_phm_rule,
- factorized_phm=self.factorized_phm,
- shared_W_phm=self.shared_W_phm,
- factorized_phm_rule=self.factorized_phm_rule,
- phm_rank=self.phm_rank,
- phm_init_range=self.phm_init_range,
- kronecker_prod=self.kronecker_prod,
- use_bias_up_sampler=self.use_bias_up_sampler,
- use_bias_down_sampler=self.use_bias_down_sampler,
- device=module_device
- )
+ adapterlayer = HyperComplexAdapterLayer(reduction_factor=self.reduction_factor, non_linearity=self.non_linearity, phm_c_init=self.phm_c_init, hypercomplex_division=self.hypercomplex_division, learn_phm=self.learn_phm, hypercomplex_nonlinearity=self.hypercomplex_nonlinearity, shared_phm_rule=self.shared_phm_rule, factorized_phm=self.factorized_phm, shared_W_phm=self.shared_W_phm, factorized_phm_rule=self.factorized_phm_rule, phm_rank=self.phm_rank, phm_init_range=self.phm_init_range, kronecker_prod=self.kronecker_prod, use_bias_up_sampler=self.use_bias_up_sampler, use_bias_down_sampler=self.use_bias_down_sampler, device=module_device, backend=self.backend)
self.delta_modules.append(adapterlayer)
return adapterlayer
diff --git a/opendelta/delta_models/layers/hypercomplex_linear.py b/opendelta/delta_models/layers/hypercomplex_linear.py
index acee0e8..e4f94c2 100644
--- a/opendelta/delta_models/layers/hypercomplex_linear.py
+++ b/opendelta/delta_models/layers/hypercomplex_linear.py
@@ -84,7 +84,8 @@ class PHMLinear(torch.nn.Module):
factorized_phm_rule=False,
phm_rank = 1,
phm_init_range=0.0001,
- kronecker_prod=False) -> None:
+ kronecker_prod=False,
+ dtype=torch.float) -> None:
super(PHMLinear, self).__init__()
assert w_init in ["phm", "glorot-normal", "glorot-uniform", "normal"]
assert c_init in ["normal", "uniform"]
@@ -104,12 +105,12 @@ class PHMLinear(torch.nn.Module):
self.factorized_phm_rule = factorized_phm_rule
if not self.shared_phm_rule:
if self.factorized_phm_rule:
- self.phm_rule_left = nn.Parameter(torch.FloatTensor(phm_dim, phm_dim, 1),
+ self.phm_rule_left = nn.Parameter(torch.empty((phm_dim, phm_dim, 1), dtype=dtype),
requires_grad=learn_phm)
- self.phm_rule_right = nn.Parameter(torch.FloatTensor(phm_dim, 1, phm_dim),
+ self.phm_rule_right = nn.Parameter(torch.empty((phm_dim, 1, phm_dim), dtype=dtype),
requires_grad=learn_phm)
else:
- self.phm_rule = nn.Parameter(torch.FloatTensor(phm_dim, phm_dim, phm_dim),
+ self.phm_rule = nn.Parameter(torch.empty((phm_dim, phm_dim, phm_dim), dtype=dtype),
requires_grad=learn_phm)
self.bias_flag = bias
self.w_init = w_init
@@ -118,15 +119,15 @@ class PHMLinear(torch.nn.Module):
self.factorized_phm = factorized_phm
if not self.shared_W_phm:
if self.factorized_phm:
- self.W_left = nn.Parameter(torch.Tensor(size=(phm_dim, self._in_feats_per_axis, self.phm_rank)),
+ self.W_left = nn.Parameter(torch.empty((phm_dim, self._in_feats_per_axis, self.phm_rank), dtype=dtype),
requires_grad=True)
- self.W_right = nn.Parameter(torch.Tensor(size=(phm_dim, self.phm_rank, self._out_feats_per_axis)),
+ self.W_right = nn.Parameter(torch.empty((phm_dim, self.phm_rank, self._out_feats_per_axis), dtype=dtype),
requires_grad=True)
else:
- self.W = nn.Parameter(torch.Tensor(size=(phm_dim, self._in_feats_per_axis, self._out_feats_per_axis)),
+ self.W = nn.Parameter(torch.empty((phm_dim, self._in_feats_per_axis, self._out_feats_per_axis), dtype=dtype),
requires_grad=True)
if self.bias_flag:
- self.b = nn.Parameter(torch.Tensor(out_features))
+ self.b = nn.Parameter(torch.empty(out_features, dtype=dtype), requires_grad=True)
else:
self.register_parameter("b", None)
self.reset_parameters()
diff --git a/opendelta/delta_models/layers/low_rank_linear.py b/opendelta/delta_models/layers/low_rank_linear.py
index bb2b25d..95c1466 100644
--- a/opendelta/delta_models/layers/low_rank_linear.py
+++ b/opendelta/delta_models/layers/low_rank_linear.py
@@ -6,17 +6,17 @@ from opendelta.delta_models.layers.init import glorot_uniform, glorot_normal
class LowRankLinear(torch.nn.Module):
def __init__(self, input_dim: int, output_dim: int, rank: int = 1,
- bias: bool = True, w_init: str = "glorot-uniform"):
+ bias: bool = True, w_init: str = "glorot-uniform", dtype=torch.float):
super(LowRankLinear, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.rank = rank
self.bias = bias
self.w_init = w_init
- self.W_left = nn.Parameter(torch.Tensor(size=(input_dim, rank)), requires_grad=True)
- self.W_right = nn.Parameter(torch.Tensor(size=(rank, output_dim)), requires_grad=True)
+ self.W_left = nn.Parameter(torch.empty((input_dim, rank), dtype=dtype),requires_grad=True)
+ self.W_right = nn.Parameter(torch.empty((rank, output_dim), dtype=dtype), requires_grad=True)
if bias:
- self.b = nn.Parameter(torch.Tensor(output_dim))
+ self.b = nn.Parameter(torch.empty(output_dim, dtype=dtype))
self.reset_parameters()
def reset_parameters(self):
diff --git a/opendelta/delta_models/lora.py b/opendelta/delta_models/lora.py
index 83bd65a..0446842 100644
--- a/opendelta/delta_models/lora.py
+++ b/opendelta/delta_models/lora.py
@@ -97,12 +97,14 @@ class LoraModel(DeltaBase):
unfrozen_modules (:obj:`List[str]`, *optional*, default to :obj:`None`): The modules that should be unfrozen
together with the prefix parameters.
common_structure (:obj:`bool`): whether using name-based addressing with a common structure mapping.
+ backend (:obj:`str`): choose the backend of plm, 'hf' for huggingface transformers,'bmt' for bmtrain
"""
config_class = LoraConfig
delta_type = "lora"
default_modified_modules = ['attn@.q@', 'attn@.v@']
+ _supported_backends = ['hf', 'bmt']
_need_pseudo_data = False
def __init__(self,
backbone_model: nn.Module,
@@ -114,6 +116,7 @@ class LoraModel(DeltaBase):
exclude_modules: Optional[List[str]] = None,
common_structure: Optional[bool] = None,
interactive_modify: Optional[Union[bool, int]] = False,
+ backend: Optional[str] = "hf",
):
DeltaBase.__init__(self,
backbone_model,
@@ -121,6 +124,7 @@ class LoraModel(DeltaBase):
unfrozen_modules=unfrozen_modules,
common_structure=common_structure,
interactive_modify=interactive_modify,
+ backend=backend,
)
arg_names = get_arg_names_inside_func(self.__init__)
for arg_name in arg_names:
@@ -151,10 +155,9 @@ class LoraModel(DeltaBase):
r=self.lora_r,
lora_alpha=self.lora_alpha,
lora_dropout=self.lora_dropout)
- try:
+ if self.backend == "bmt":
import bmtrain as bmt
new_module = bmt.BMTrainModelWrapper(new_module)
- except:
- pass
+
self.delta_modules.append(new_module)
return new_module
diff --git a/opendelta/delta_models/low_rank_adapter.py b/opendelta/delta_models/low_rank_adapter.py
index 5946331..eaef90a 100644
--- a/opendelta/delta_models/low_rank_adapter.py
+++ b/opendelta/delta_models/low_rank_adapter.py
@@ -47,7 +47,8 @@ class LowRankAdapter(nn.Module):
non_linearity="gelu_new",
low_rank_w_init="glorot-uniform",
low_rank_rank=1,
- device=None):
+ device=None,
+ backend='hf'):
super().__init__()
self.reduction_factor = reduction_factor
self.non_linearity = non_linearity
@@ -55,27 +56,31 @@ class LowRankAdapter(nn.Module):
self.low_rank_rank = low_rank_rank
self.device = device
self.instantiated = False
+ self.backend=backend
- def instantiate(self, hidden_dim):
+ def instantiate(self, hiddens):
+ self.hidden_dim = hiddens.shape[-1]
+ self.hidden_dtype = hiddens.dtype
- self.down_sample_size = hidden_dim // self.reduction_factor
+ self.down_sample_size = self.hidden_dim // self.reduction_factor
self.activation = Activations(self.non_linearity.lower()).to(self.device)
- self.down_sampler = LowRankLinear(hidden_dim, self.down_sample_size,
+ self.down_sampler = LowRankLinear(self.hidden_dim, self.down_sample_size,
w_init=self.low_rank_w_init,
- rank=self.low_rank_rank).to(self.device)
- self.up_sampler = LowRankLinear(self.down_sample_size, hidden_dim,
+ rank=self.low_rank_rank,
+ dtype=self.hidden_dtype).to(self.device)
+ self.up_sampler = LowRankLinear(self.down_sample_size, self.hidden_dim,
w_init=self.low_rank_w_init,
- rank=self.low_rank_rank).to(self.device)
+ rank=self.low_rank_rank,
+ dtype=self.hidden_dtype).to(self.device)
self.instantiated = True
- try:
+ if self.backend == 'bmt':
import bmtrain as bmt
self.activation = bmt.BMTrainModelWrapper(self.activation)
self.down_sampler = bmt.BMTrainModelWrapper(self.down_sampler)
self.up_sampler = bmt.BMTrainModelWrapper(self.up_sampler)
- except:
- pass
+
def post_forward(self, output):
r""" Get the hidden_states from the PLM's layer output, pass it into the low-rank adapter,
@@ -91,9 +96,7 @@ class LowRankAdapter(nn.Module):
raise TypeError
if not self.instantiated:
- self.hidden_dim = hiddens.shape[-1]
- logger.debug(f"Got hidden dim hidden_dim {self.hidden_dim}")
- self.instantiate(hidden_dim=self.hidden_dim)
+ self.instantiate(hiddens = hiddens)
z = self.down_sampler(hiddens)
z = self.activation(z)
@@ -154,6 +157,7 @@ class LowRankAdapterModel(DeltaBase):
config_class = LowRankAdapterConfig
delta_type = "low_rank_adapter"
default_modified_modules = ["attn@.proj@", "ff@.w2@"]
+ _supported_backends = ['hf', 'bmt']
_need_pseudo_data = True
def __init__(self,
backbone_model: nn.Module,
@@ -166,6 +170,7 @@ class LowRankAdapterModel(DeltaBase):
unfrozen_modules: Optional[List[str]] = None,
common_structure: Optional[bool] = None,
interactive_modify: Optional[Union[bool, int]] = False,
+ backend: Optional[str] = 'hf',
):
DeltaBase.__init__(self,
backbone_model,
@@ -174,6 +179,7 @@ class LowRankAdapterModel(DeltaBase):
unfrozen_modules=unfrozen_modules,
common_structure=common_structure,
interactive_modify=interactive_modify,
+ backend=backend,
)
arg_names = get_arg_names_inside_func(self.__init__)
for arg_name in arg_names:
@@ -209,6 +215,6 @@ class LowRankAdapterModel(DeltaBase):
non_linearity = self.non_linearity,
low_rank_w_init = self.low_rank_w_init,
low_rank_rank = self.low_rank_rank,
- device=module_device)
+ device=module_device, backend=self.backend)
self.delta_modules.append(adapterlayer)
return adapterlayer
diff --git a/opendelta/delta_models/parallel_adapter.py b/opendelta/delta_models/parallel_adapter.py
index 1024394..d354587 100644
--- a/opendelta/delta_models/parallel_adapter.py
+++ b/opendelta/delta_models/parallel_adapter.py
@@ -25,30 +25,36 @@ class ParallelAdapterLayer(nn.Module):
def get_layer_count(cls):
return cls.layer_count
- def __init__(self, bottleneck_dim=24, non_linearity='gelu_new', scaled=1, device=None):
+ def __init__(self, bottleneck_dim=24, non_linearity='gelu_new', scaled=1, device=None, backend='hf'):
super().__init__()
self.bottleneck_dim = bottleneck_dim
self.device = device
self.instantiated = False
self.non_linearity = non_linearity
self.scaled = scaled
+ self.backend = backend
self.layer_id = ParallelAdapterLayer.get_layer_count()
ParallelAdapterLayer.count_layer()
- def instantiate(self, hidden_dim):
+ def instantiate(self, hiddens):
+ self.hidden_dim = hiddens.shape[-1]
+ self.hidden_dtype = hiddens.dtype
self.modulelist = nn.Sequential()
- self.modulelist.add_module("down_proj",nn.Linear(hidden_dim, self.bottleneck_dim, device=self.device))
+ self.modulelist.add_module("down_proj",nn.Linear(self.hidden_dim, self.bottleneck_dim, device=self.device, dtype=self.hidden_dtype))
# select non-linearity
self.modulelist.add_module("non_linear", Activations(self.non_linearity.lower()))
- self.modulelist.add_module("up_proj", nn.Linear(self.bottleneck_dim, self.hidden_dim, device=self.device))
+ self.modulelist.add_module("up_proj", nn.Linear(self.bottleneck_dim, self.hidden_dim, device=self.device, dtype=self.hidden_dtype))
self.instantiated = True
# initialize the weight, which is important for fast convergence and better performance.
self.apply(self._init_weight)
+ if self.backend == 'bmt':
+ import bmtrain as bmt
+ self.modulelist = bmt.BMTrainModelWrapper(self.modulelist)
def _init_weight(self, module):
if isinstance(module, nn.Linear):
@@ -71,9 +77,8 @@ class ParallelAdapterLayer(nn.Module):
if not self.instantiated:
- self.hidden_dim = hiddens.shape[-1]
- logger.debug(f"Got hidden dim hidden_dim {self.hidden_dim}")
- self.instantiate(hidden_dim=self.hidden_dim)
+ # logger.debug(f"Got hidden dim hidden_dim {self.hidden_dim}")
+ self.instantiate(hiddens = hiddens)
self.adapter_output = self.modulelist(hiddens) * self.scaled
@@ -141,12 +146,14 @@ class ParallelAdapterModel(DeltaBase):
modified_modules (:obj:`List[str]`): modules to add parallel adapter. Must be paired and have the save order in layer. For examples, ["attn", "attn", "ff.w1", "ff.w2"] add one parallel adapter from attn's input to attn's output, and another one from ff.w1's input to ff.w2's output.
unfrozen_modules (:obj:`List[str]`, *optional*, default to :obj:`None`): The modules that should be unfrozen together with the parallel adapter parameters.
common_structure (:obj:`bool`): whether using name-based addressing witha common structure mapping.
+ backend (:obj:`str`): choose the backend of plm, 'hf' for huggingface transformers,'bmt' for bmtrain
"""
config_class = ParallelAdapterConfig
delta_type = "parallel_adapter"
default_modified_modules = ["attn@", "attn@", "ff@.w1@", "ff@.w2@"]
# default_modified_modules = ["attn", "attn", "ff.w1", "ff.w2"]
+ _supported_backends = ['hf', 'bmt']
_need_pseudo_data = True
def __init__(self,
backbone_model: nn.Module,
@@ -156,7 +163,8 @@ class ParallelAdapterModel(DeltaBase):
exclude_modules: Optional[List[str]] = None,
unfrozen_modules: Optional[bool] = None,
common_structure: Optional[bool] = None,
- interactive_modify: Optional[Union[bool, int]] = False,
+ interactive_modify: Optional[Union[bool, int]] = False,
+ backend: Optional[str] = "hf",
):
DeltaBase.__init__(self,
backbone_model,
@@ -165,6 +173,7 @@ class ParallelAdapterModel(DeltaBase):
unfrozen_modules=unfrozen_modules,
common_structure=common_structure,
interactive_modify=interactive_modify,
+ backend=backend,
)
arg_names = get_arg_names_inside_func(self.__init__)
for arg_name in arg_names:
@@ -193,7 +202,7 @@ class ParallelAdapterModel(DeltaBase):
def new_module_like(self, module):
module_device = get_device(module)
- adapterlayer = ParallelAdapterLayer(bottleneck_dim=self.bottleneck_dim, non_linearity=self.non_linearity, device=module_device)
+ adapterlayer = ParallelAdapterLayer(bottleneck_dim=self.bottleneck_dim, non_linearity=self.non_linearity, device=module_device, backend=self.backend)
self.delta_modules.append(adapterlayer)
return adapterlayer
\ No newline at end of file
diff --git a/opendelta/delta_models/prefix.py b/opendelta/delta_models/prefix.py
index f64df2c..777a8e1 100644
--- a/opendelta/delta_models/prefix.py
+++ b/opendelta/delta_models/prefix.py
@@ -516,6 +516,7 @@ class PrefixModel(DeltaBase):
config_class = PrefixConfig
delta_type = "prefix"
default_modified_modules = ['attn@']
+ _supported_backends = ['hf']
_need_pseudo_data = True
def __init__(self,
backbone_model: nn.Module,
diff --git a/opendelta/delta_models/soft_prompt.py b/opendelta/delta_models/soft_prompt.py
index ff2346d..6453368 100644
--- a/opendelta/delta_models/soft_prompt.py
+++ b/opendelta/delta_models/soft_prompt.py
@@ -161,6 +161,7 @@ class SoftPromptModel(DeltaBase):
config_class = SoftPromptConfig
delta_type = "soft_prompt"
default_modified_modules = ["root"] # not used
+ _supported_backends = ['hf'] #'bmt']
_need_pseudo_data = False
def __init__(self,
backbone_model: nn.Module,
diff --git a/opendelta/utils/backend.py b/opendelta/utils/backend.py
new file mode 100644
index 0000000..0b5b124
--- /dev/null
+++ b/opendelta/utils/backend.py
@@ -0,0 +1,110 @@
+
+
+import importlib
+
+
+class BackendMapping:
+ """
+ " A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed.
+
+ Args:
+
+ - config_mapping: The map model type to config class
+ - model_mapping: The map model type to model (or tokenizer) class
+ """
+
+ def __init__(self, backend):
+ self.backend = backend
+ assert backend in ['hf', 'bmt'], "Backend should be one of 'hf', 'bmt'. "
+ if backend == 'hf':
+ self.backend_mapping = {
+ "linear": "torch.nn.Linear",
+ "layer_norm": "torch.nn.LayerNorm",
+ "module": "torch.nn.Module",
+ "parameter": "torch.nn.Parameter"
+ }
+ elif backend == 'bmt':
+ self.backend_mapping = {
+ "linear": "model_center.layer.Linear",
+ "layer_norm": "model_center.layer.LayerNorm",
+ "module": "bmtrain.layer.DistributedModule",
+ "parameter": "bmtrain.nn.DistributedParameter"
+ }
+ self.registered = {}
+
+ def load(self, model_type):
+ if model_type not in self.registered:
+ splited = self.backend_mapping[model_type].split(".")
+ module_name, class_name = ".".join(splited[:-1]), splited[-1]
+ module = importlib.import_module(module_name)
+ the_class = getattr(module, class_name)
+ self.registered[model_type] = the_class
+ return self.registered[model_type]
+
+ def check_type(self, module, expect_type):
+ the_class = self.load(expect_type)
+ if isinstance(module, the_class):
+ return True
+ else:
+ return False
+
+
+ # def keys(self):
+ # mapping_keys = [
+ # self._load_attr_from_module(key, name)
+ # for key, name in self._config_mapping.items()
+ # if key in self._model_mapping.keys()
+ # ]
+ # return mapping_keys + list(self._extra_content.keys())
+
+ # def get(self, key, default):
+ # try:
+ # return self.__getitem__(key)
+ # except KeyError:
+ # return default
+
+ # def __bool__(self):
+ # return bool(self.keys())
+
+ # def values(self):
+ # mapping_values = [
+ # self._load_attr_from_module(key, name)
+ # for key, name in self._model_mapping.items()
+ # if key in self._config_mapping.keys()
+ # ]
+ # return mapping_values + list(self._extra_content.values())
+
+ # def items(self):
+ # mapping_items = [
+ # (
+ # self._load_attr_from_module(key, self._config_mapping[key]),
+ # self._load_attr_from_module(key, self._model_mapping[key]),
+ # )
+ # for key in self._model_mapping.keys()
+ # if key in self._config_mapping.keys()
+ # ]
+ # return mapping_items + list(self._extra_content.items())
+
+ # def __iter__(self):
+ # return iter(self.keys())
+
+ # def __contains__(self, item):
+ # if item in self._extra_content:
+ # return True
+ # if not hasattr(item, "__name__") or item.__name__ not in self._reverse_config_mapping:
+ # return False
+ # model_type = self._reverse_config_mapping[item.__name__]
+ # return model_type in self._model_mapping
+
+ # def register(self, key, value):
+ # """
+ # Register a new model in this mapping.
+ # """
+ # if hasattr(key, "__name__") and key.__name__ in self._reverse_config_mapping:
+ # model_type = self._reverse_config_mapping[key.__name__]
+ # if model_type in self._model_mapping.keys():
+ # raise ValueError(f"'{key}' is already used by a Transformers model.")
+
+ # self._extra_content[key] = value
+
+
diff --git a/opendelta/utils/inspect.py b/opendelta/utils/inspect.py
new file mode 100644
index 0000000..830298e
--- /dev/null
+++ b/opendelta/utils/inspect.py
@@ -0,0 +1,112 @@
+
+import torch
+import torch.nn as nn
+from typing import Optional
+import opendelta.utils.logging as logging
+
+logger = logging.get_logger(__name__)
+
+
+def inspect_module_statistics(module: Optional[nn.Module]=None, verbose=True):
+ r"""Get the statistics of the parameters in the delta modules.
+
+ Args:
+ module (:obj:`nn.Module`, *optional*): The module to compute the statistics.
+
+ Returns:
+ :obj:`dict`: The statistics of the parameters in the delta modules.
+
+ """
+
+ stat = {}
+ n_trainable = num_trainable_parameters(module)
+ n_total = num_total_parameters(module)
+
+ stat['total_parameters'] = n_total
+ stat['trainable_parameters'] = n_trainable
+
+ stat['trainable_ratio'] = n_trainable/n_total
+
+ n_delta = num_delta_parameters(module)
+ n_total = num_total_parameters(module)
+ stat['delta_parameters'] = n_delta
+ stat['delta_ratio'] = n_delta/n_total
+
+ cudamem = 0
+ maxcudamem = 0
+ for device_id in range(torch.cuda.device_count()):
+ cudamem += torch.cuda.memory_allocated(f"cuda:{device_id}")/1024**3
+ maxcudamem += torch.cuda.max_memory_allocated(f"cuda:{device_id}")/1024**3
+ stat['cudamem'] = cudamem
+ stat['maxcudamem'] = maxcudamem
+
+ if verbose:
+ logger.info(stat)
+
+ return stat
+
+def num_trainable_parameters(module: Optional[nn.Module]=None):
+ r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to
+ compute the trainable rate.
+
+ Args:
+ module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters.
+
+ Returns:
+ :obj:`List[nn.Parameter]`
+ """
+ pnum_tot = 0
+ for param in module.parameters():
+ if param.requires_grad:
+ pnum_tot += param.numel()
+ return pnum_tot
+
+
+def num_total_parameters(module: Optional[nn.Module]=None):
+ r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to
+ compute the trainable rate.
+
+ Args:
+ module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters.
+
+ Returns:
+ :obj:`List[nn.Parameter]`
+ """
+ pnum_tot = 0
+ for param in module.parameters():
+ pnum_tot += param.numel()
+ return pnum_tot
+
+def num_delta_parameters(module: Optional[nn.Module]=None):
+ r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to
+ compute the trainable rate.
+
+ Args:
+ module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters.
+
+ Returns:
+ :obj:`List[nn.Parameter]`
+ """
+ pnum_tot = 0
+ for param in module.parameters():
+ if hasattr(param, "_is_delta"):
+ pnum_tot += param.numel()
+ return pnum_tot
+
+def inspect_optimizer_statistics(optimizer, verbose=True):
+ stats = {}
+ for id, param_group in enumerate(optimizer.param_groups):
+ stat = {}
+ fine_grain_info = [(p.numel(), p.requires_grad) for p in param_group['params']]
+ stat['total_parameters'] = sum(n for n, r in fine_grain_info)
+ stat['trainable_parameters'] = sum(n for n, r in fine_grain_info if r)
+ stat['trainable_ratio'] = "{:.6f}%".format(stat['trainable_parameters']/stat['total_parameters']*100)
+ for key in param_group:
+ if key != 'params':
+ stat[key] = param_group[key]
+ stats[f'param_group_{id}'] = stat
+
+ if verbose:
+ logger.info(f"optimizer info: {stats}")
+
+ return stat
diff --git a/setup.py b/setup.py
index 27c0313..711f5a4 100644
--- a/setup.py
+++ b/setup.py
@@ -31,7 +31,7 @@ def get_requirements():
with open('README.md', 'r') as f:
setuptools.setup(
name = 'opendelta',
- version = "0.3.1",
+ version = "0.3.2",
description = "An open source framework for delta learning (parameter efficient learning).",
long_description=open("README.md", "r", encoding="utf-8").read(),
long_description_content_type="text/markdown",