unittest
This commit is contained in:
parent
e4a0acff32
commit
e6be66341e
|
@ -0,0 +1,45 @@
|
|||
# use tranformers as usual.
|
||||
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
||||
t5 = AutoModelForSeq2SeqLM.from_pretrained("t5-large")
|
||||
t5_tokenizer = AutoTokenizer.from_pretrained("t5-large")
|
||||
# A running example
|
||||
inputs_ids = t5_tokenizer.encode("Is Harry Poter wrtten by JKrowling", return_tensors="pt")
|
||||
t5_tokenizer.decode(t5.generate(inputs_ids)[0])
|
||||
# >>> '<pad><extra_id_0>? Is it Harry Potter?</s>'
|
||||
|
||||
|
||||
# use existing delta models
|
||||
from opendelta import AutoDeltaModel, AutoDeltaConfig
|
||||
|
||||
# use default configuration for cunstomized wrapped models which have PLMs inside. This is a common need for users.
|
||||
import torch.nn as nn
|
||||
class WrappedModel(nn.Module):
|
||||
def __init__(self, inner_model):
|
||||
super().__init__()
|
||||
self.inner = inner_model
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.inner(*args, **kwargs)
|
||||
|
||||
wrapped_model = WrappedModel(WrappedModel(t5))
|
||||
|
||||
# say we use LoRA
|
||||
delta_config = AutoDeltaConfig.from_dict({"delta_type":"parallel_adapter"})
|
||||
delta2 = AutoDeltaModel.from_config(delta_config, backbone_model=wrapped_model)
|
||||
delta2.log()
|
||||
# >>> root
|
||||
# -- inner
|
||||
# -- inner
|
||||
# -- encoder
|
||||
# -- block
|
||||
# -- 0
|
||||
# -- layer
|
||||
# ...
|
||||
# -- parallel_adapter
|
||||
# ...
|
||||
# -- 1
|
||||
# -- DenseRuleDense
|
||||
# -- wi
|
||||
# -- parallel_adapter
|
||||
# ...
|
||||
delta2.detach()
|
||||
delta2.log()
|
Loading…
Reference in New Issue