OpenDeltaMirror/opendelta/delta_models/compacter.py

299 lines
15 KiB
Python

from functools import partial
from typing import Optional, Union
from opendelta.delta_configs import BaseDeltaConfig
from opendelta.utils.signature import get_arg_names_inside_func
from opendelta.utils.name_based_addressing import *
from opendelta.utils.cuda import get_device
from opendelta.basemodel import DeltaBase
import torch.nn as nn
import torch
from opendelta.delta_models.layers.activations import Activations
import inspect
from opendelta.delta_models.layers.hypercomplex_linear import PHMLinear
import opendelta.utils.logging as logging
logger = logging.get_logger(__name__)
class HyperComplexAdapterLayer(nn.Module):
"""Hypercomplex Adapter layer, in which the weights of up and down sampler modules
are parameters are 1/n times of the conventional adapter layers, where n is
hypercomplex division number."""
def __init__(self,
reduction_factor=16,
non_linearity="relu",
phm_c_init="normal",
hypercomplex_division=4,
learn_phm=True,
hypercomplex_nonlinearity="glorot-uniform",
shared_phm_rule=False,
factorized_phm=True,
phm_rule: Optional[torch.Tensor]=None,
shared_W_phm=False,
factorized_phm_rule=False,
phm_rank=1,
phm_init_range=0.0001,
kronecker_prod=None,
device=None,
use_bias_up_sampler=True,
use_bias_down_sampler=True,
backend = 'hf',
):
super().__init__()
self.reduction_factor = reduction_factor
self.non_linearity = non_linearity
self.phm_c_init = phm_c_init
self.hypercomplex_division = hypercomplex_division
self.learn_phm = learn_phm
self.phm_rule=phm_rule
self.hypercomplex_nonlinearity = hypercomplex_nonlinearity
self.shared_phm_rule = shared_phm_rule
self.factorized_phm = factorized_phm
self.shared_W_phm = shared_W_phm
self.factorized_phm_rule = factorized_phm_rule
self.phm_rank = phm_rank
self.phm_init_range = phm_init_range
self.kronecker_prod = kronecker_prod
self.use_bias_up_sampler=use_bias_up_sampler
self.use_bias_down_sampler=use_bias_down_sampler
self.device = device
self.backend = backend
self.instantiated = False
def instantiate(self, hiddens):
self.hidden_dim = hiddens.shape[-1]
self.hidden_dtype = hiddens.dtype
self.down_sample_size = self.hidden_dim // self.reduction_factor
self.activation = Activations(self.non_linearity.lower()).to(self.device)
self.down_sampler = PHMLinear(in_features=self.hidden_dim,
out_features=self.down_sample_size,
bias=self.use_bias_down_sampler,
c_init=self.phm_c_init,
phm_dim=self.hypercomplex_division,
phm_rule=self.phm_rule,
learn_phm=self.learn_phm,
w_init=self.hypercomplex_nonlinearity,
shared_phm_rule=self.shared_phm_rule,
factorized_phm=self.factorized_phm,
shared_W_phm=self.shared_W_phm,
factorized_phm_rule=self.factorized_phm_rule,
phm_rank=self.phm_rank,
phm_init_range=self.phm_init_range,
kronecker_prod=self.kronecker_prod,
dtype = self.hidden_dtype).to(self.device)
self.up_sampler = PHMLinear(in_features=self.down_sample_size,
out_features=self.hidden_dim,
bias=self.use_bias_up_sampler,
c_init=self.phm_c_init,
phm_dim=self.hypercomplex_division,
phm_rule=self.phm_rule,
learn_phm=self.learn_phm,
w_init=self.hypercomplex_nonlinearity,
shared_phm_rule=self.shared_phm_rule,
factorized_phm=self.factorized_phm,
shared_W_phm=self.shared_W_phm,
factorized_phm_rule=self.factorized_phm_rule,
phm_rank=self.phm_rank,
phm_init_range=self.phm_init_range,
kronecker_prod=self.kronecker_prod,
dtype = self.hidden_dtype).to(self.device)
self.instantiated = True
if self.backend == "bmt":
import bmtrain as bmt
self.activation = bmt.BMTrainModelWrapper(self.activation)
self.down_sampler = bmt.BMTrainModelWrapper(self.down_sampler)
self.up_sampler = bmt.BMTrainModelWrapper(self.up_sampler)
def post_forward(self, output):
r""" Get the hidden_states from the PLM's layer output, pass it into the hypercomplex adapter,
then combined with the main hidden_states. Finally pass it into the subsequent layer.
"""
if isinstance(output, tuple):
hiddens = output[0]
elif isinstance(output, torch.Tensor):
hiddens = output
else:
raise TypeError
if not self.instantiated:
self.instantiate(hiddens=hiddens)
z = self.down_sampler(hiddens)
z = self.activation(z)
adapter_output = self.up_sampler(z)
modified_output = adapter_output + hiddens # residual_connection
if isinstance(output, tuple):
output = (modified_output,) + output[1:]
elif isinstance(output, torch.Tensor):
output = modified_output
else:
raise TypeError
return output
class CompacterConfig(BaseDeltaConfig):
r"""
This is the configuration class to store the configuration of a :py:class:`~CompacterModel`
"""
def __init__(
self,
bottleneck_dim: Optional[int]=32,
non_linearity: Optional[str]='relu',
sequential: Optional[str] = True,
reduction_factor=16,
phm_c_init="normal",
hypercomplex_division=4,
learn_phm=True,
hypercomplex_nonlinearity="glorot-uniform",
shared_phm_rule=False,
factorized_phm=True,
shared_W_phm=False,
factorized_phm_rule=False,
phm_rank=1,
phm_init_range=0.0001,
kronecker_prod=None,
use_bias_up_sampler=True,
use_bias_down_sampler=True,
**kwargs
):
super().__init__(**kwargs)
arg_names = get_arg_names_inside_func(self.__init__)
for arg_name in arg_names:
if not hasattr(self, arg_name): # the arg has not been registered in parent config
setattr(self, arg_name, locals()[arg_name])
class CompacterModel(DeltaBase):
r""" The implementation of `Compacter: Efficient Low-Rank Hypercomplex Adapter Layers <https://arxiv.org/abs/2106.04647>`_ .
Add compacter layer to the designated ``modified_modules``. In sequential paradigm, The modules' output is then
passed into the compacter's post_forward.
.. note::
We **assume** the output of the modified module is the hidden state or a tuple where hidden state is the
first element. This is true for most PLMs. However, we admit that currently it's not rigorous, We will improve
it in the next version. Currently, if you encount an error here for you backbone, you can modify the code to
get the hidden state.
All the hyperparameter is adopted from the `compacter code base <https://github.com/rabeehk/compacter>`_ .
class attributes:
- default_modified_modules = ["attn", "ff"] According to the compacter paper, we add compacter to the attention layer
and feed forward layer.
- delta_type = "compacter"
Args:
backbone_model (:obj:`transformers.PretrainedModels`): The backbone model to be modified.
modified_modules (:obj:`List[str]`): For prefix tuning, the it must refer to an attention layer (Currently, only
the implemented ones)
unfrozen_modules (:obj:`List[str]`, *optional*, default to :obj:`None`): The modules that should be unfrozen
together with the prefix parameters.
common_structure (:obj:`bool`, *optional*, default to :obj:`None`): whether using name-based addressing with a common structure mapping.
backend (:obj:`str`): choose the backend of plm, 'hf' for huggingface transformers,'bmt' for bmtrain
reduction_factor (:obj:`int`, *optional*, default to ``16``): bottleneck_dim = hidden_dim//reduction_factor
non_linearity (:obj:`str`, *optional*, default to ``"gelu_new"``): The non linearity activation used in between the down
projecter and the up projecter.
phm_c_init (:obj:`str`, *optional*, default to ``"normal"``): The initialize method of the C in compacter.
hypercomplex_division (:obj:`str`, *optional*, default to 4): The ``n`` in the paper. The number of division along a dimension in compector.
learn_phm (:obj:`bool`, *optional*, default to :obj:`True` ): Whether the phm rule requires_grad. Note that we didn't check the performance of learn_phm=False.
hypercomplex_nonlinearity (:obj:`str`, *optional*, default to ``"glorot-uniform"``): The initialize method of the W in compacter.
shared_phm_rule (:obj:`str`, *optional* , default to :obj:`False`): Whether the phm rule is shared accross layer.
factorized_phm (:obj:`str`, *optional*, default to :obj:`True`): Whether to factorize the phm into low rank product.
shared_W_phm (:obj:`str`, *optional* , default to :obj:`False`): Whether the W_phm is shared accross layer.
factorized_phm_rule (:obj:`str`, *optional* , default to :obj:`False`): Whether to factorize the phm rule into low rank product.
phm_rank=1 (:obj:`int`, *optional*, default to 1): The rank of low rank decomposition of phm.
phm_init_range (:obj:`float`, *optional*, default to 0.0001): The range of phm initialization.
kronecker_prod (:obj:`bool`, *optional*, default to False): Whether to perform kronecker_prod in matvec_product, proposed by
`Parameterization of Hypercomplex Multiplications <https://openreview.net/forum?id=rcQdycl0zyk>`_
use_bias_up_sampler (:obj:`float`, *optional*, default to :obj:`True`): Whether add bias to the up projector.
Note that the bias for this is a ``hidden_dim`` vector.
use_bias_down_sampler (:obj:`float`, *optional*, default to :obj:`True`): Whether add bias to the down projector.
Note that the bias for this is a ``bottleneck_dim`` vector.
"""
config_class = CompacterConfig
delta_type = "compacter"
default_modified_modules = ["attn@.proj@", "ff@.w2@"]
_supported_backends = ['hf', 'bmt']
_need_pseudo_data = True
def __init__(self,
backbone_model,
modified_modules: Optional[List[str]] = None,
exclude_modules: Optional[List[str]] = None,
unfrozen_modules: Optional[List[str]] = None,
common_structure: Optional[bool] = None,
interactive_modify: Optional[Union[bool, int]] = False,
backend: Optional[str] = 'hf',
reduction_factor=16,
non_linearity="gelu_new",
phm_c_init="normal",
hypercomplex_division=4,
learn_phm=True,
hypercomplex_nonlinearity="glorot-uniform",
shared_phm_rule=False,
factorized_phm=True,
shared_W_phm=False,
factorized_phm_rule=False,
phm_rank=1,
phm_init_range=0.0001,
kronecker_prod=None,
use_bias_up_sampler=True,
use_bias_down_sampler=True,
):
DeltaBase.__init__(self,
backbone_model,
modified_modules=modified_modules,
exclude_modules=exclude_modules,
unfrozen_modules=unfrozen_modules,
common_structure=common_structure,
interactive_modify=interactive_modify,
)
assert shared_phm_rule == False, "In opendelta version {opendelta.__version__}, "\
"shared_phm_rule is not supported. Later, sharing parameters will be tackled using"\
"a unified paradigm."
assert shared_W_phm == False, "In opendelta version {opendelta.__version__}, "\
"shared_W_phm is not supported. Later, sharing parameters will be tackled using"\
"a unified paradigm."
arg_names = get_arg_names_inside_func(self.__init__)
for arg_name in arg_names:
if not hasattr(self, arg_name): # not registered in parent class
setattr(self, arg_name, locals()[arg_name])
self.delta_modules = nn.ModuleList()
self.add_all_delta_to_backbone(self.backbone_model,
self.modified_modules,
)
# def add_all_delta_to_backbone(self,
# module: nn.Module,
# modified_modules: List[str],
# ) -> nn.Module:
# for key, _ in module.named_modules():
# if self.find_key(key, modified_modules):
# self.update_module(module, key)
# self._pseudo_data_to_instantiate(module)
# self.mark_as_delta()
# return module
def update_module(self, module: nn.Module, key: str):
_, _, ref = self.find_module(module, key)
adapterlayer = self.new_module_like(ref)
self.insert_sequential_module(ref,
delta_module=adapterlayer,
delta_name="compactor")
def new_module_like(self, module):
module_device = get_device(module)
adapterlayer = HyperComplexAdapterLayer(reduction_factor=self.reduction_factor, non_linearity=self.non_linearity, phm_c_init=self.phm_c_init, hypercomplex_division=self.hypercomplex_division, learn_phm=self.learn_phm, hypercomplex_nonlinearity=self.hypercomplex_nonlinearity, shared_phm_rule=self.shared_phm_rule, factorized_phm=self.factorized_phm, shared_W_phm=self.shared_W_phm, factorized_phm_rule=self.factorized_phm_rule, phm_rank=self.phm_rank, phm_init_range=self.phm_init_range, kronecker_prod=self.kronecker_prod, use_bias_up_sampler=self.use_bias_up_sampler, use_bias_down_sampler=self.use_bias_down_sampler, device=module_device, backend=self.backend)
self.delta_modules.append(adapterlayer)
return adapterlayer