788 lines
38 KiB
Python
788 lines
38 KiB
Python
|
|
|
|
from collections import OrderedDict
|
|
from multiprocessing.sharedctypes import Value
|
|
import os
|
|
from opendelta.delta_configs import BaseDeltaConfig
|
|
from opendelta.utils.model_md5 import gen_model_hash
|
|
from opendelta.utils.signature import get_arg_names, signature
|
|
from typing import Optional, Union
|
|
from opendelta.utils.cuda import get_device
|
|
from opendelta.utils.name_based_addressing import *
|
|
import torch.nn as nn
|
|
import torch
|
|
from functools import wraps
|
|
# from decorator import decorate
|
|
from opendelta.utils.decorate import decorate
|
|
from opendelta.utils.structure_mapping import transform
|
|
from transformers.file_utils import PushToHubMixin
|
|
from transformers.deepspeed import deepspeed_config, is_deepspeed_zero3_enabled
|
|
from opendelta import SaveLoadMixin
|
|
from opendelta import logging
|
|
from opendelta.utils.structure_mapping import CommonStructureMap
|
|
from opendelta.utils.interactive.web import interactive
|
|
from opendelta.utils.data_parallel import new_replicate_for_data_parallel
|
|
logger = logging.get_logger(__name__)
|
|
|
|
def is_leaf_module(module):
|
|
r"""Whether the module is a leaf module
|
|
"""
|
|
try:
|
|
return len([n for n,_ in module.named_children()]) == 0
|
|
except:
|
|
from IPython import embed
|
|
embed()
|
|
|
|
def non_module_param(module: nn.Module):
|
|
module_names = [n for n, _ in module.named_modules()]
|
|
ret = []
|
|
for n, p in module.named_parameters():
|
|
if not is_child_key(n, module_names):
|
|
ret.append((n,p))
|
|
return ret
|
|
|
|
|
|
|
|
|
|
|
|
class DeltaBase(nn.Module, SaveLoadMixin):
|
|
r"""This is the base class for all delta models. It provides four simple but effective functionalities
|
|
for building the delta model:
|
|
|
|
#. addressing a module inside the backbone model using a minimal description key.
|
|
#. provide the interface for modifying and inserting model which keeps the docs/IO the same as the module
|
|
before modification.
|
|
#. pass a pseudo input to determine the inter dimension of the delta models.
|
|
#. freeze a part of model parameters according to key.
|
|
|
|
It also provides unified interface for model loading and saving.
|
|
|
|
Class attributes (overridden by derived classes):
|
|
|
|
- delta_type (:obj:`str`): the name of the delta modules, used to create the correct :class:`opendelta.AutoDeltaModel`.
|
|
- config_class (:class:`BaseDeltaConfig`): The corresponding config model
|
|
|
|
|
|
Args:
|
|
backbone_model (:obj:`nn.Module`, *required*): backbone model that the delta models are build opon. The modification to the
|
|
backbone model are in place.
|
|
modified_modules (:obj:`List[str]`, *optional*, default to :obj:`None`): The modules are subjected to update.
|
|
|
|
.. note::
|
|
leave this argument :obj:`None` will make the delta model return to the default setting, which add the delta
|
|
models to the position experimented the paper. In this setting, the common structure mapping is loaded to
|
|
addressing the corresponding modules.
|
|
exclude_modules (:obj:`str`, *optional*, default to :obj:`None`): The modules starts with these strings will be excluded in modification.
|
|
Note that currently only plain text (no regular expression) is supported.
|
|
unfrozen_modules (:obj:`str`, *optional*, default to :obj:`None`): The modules that are **not** frozen when freezing the main part of the model.
|
|
registraction_name (:obj:`str`, *optional*, default to ``"deltas"``): The root name of the delta models when
|
|
attached to the backbone model.
|
|
common_structure (:obj:`bool`, *optional*, default to :obj:`None`): Whether use the common structure mapping to specify the
|
|
modified_modules. i.e., if common_structure=True, then we use a common ["attn"] for attention module in different models.
|
|
We DO NOT recommend manually set ``common_structure`` to ``true`` by yourself unless you are using delta
|
|
among multiple backbones and don't want to modify the code.
|
|
|
|
interactive_modify (:obj:`bool` or :obj:`int`, *optional*, default to :obj:`None`): Whether to use interactive modification.
|
|
By setting to :obj:`int` can specify the port of web server.
|
|
"""
|
|
delta_type = ""
|
|
default_modified_modules = []
|
|
default_exclude_modules = ["lm_head"]
|
|
config_class = BaseDeltaConfig
|
|
default_unfrozen_modules = ["deltas"]
|
|
def __init__(self,
|
|
backbone_model: nn.Module,
|
|
modified_modules: Optional[List[str]] = None,
|
|
exclude_modules: Optional[List[str]] = None,
|
|
unfrozen_modules: Optional[List[str]] = None,
|
|
interactive_modify: Optional[Union[bool, int]] = False,
|
|
common_structure: Optional[bool] = False,
|
|
):
|
|
nn.Module.__init__(self)
|
|
# register the backbone model after init using self.__dict__ method to avoid adding backbone_model
|
|
# to the modules of the delta model.
|
|
self.__dict__["backbone_model"] = backbone_model
|
|
if modified_modules is None and exclude_modules is None:
|
|
if interactive_modify:
|
|
if isinstance(interactive_modify, bool) and interactive_modify==True:
|
|
self.modified_modules = interactive(backbone_model)
|
|
else:
|
|
self.modified_modules = interactive(backbone_model, port=interactive_modify)
|
|
self.common_structure = False
|
|
else:
|
|
self.modified_modules = self.default_modified_modules
|
|
self.common_structure = True
|
|
self.exclude_modules = self.default_exclude_modules
|
|
else:
|
|
if interactive_modify:
|
|
raise ValueError("Use modified_modules(or exclude modules) and interactive_modify at the same time is not supported")
|
|
if modified_modules is not None:
|
|
self.modified_modules = modified_modules
|
|
else:
|
|
self.modified_modules = self.default_modified_modules
|
|
if exclude_modules is not None:
|
|
self.exclude_modules = exclude_modules
|
|
else:
|
|
self.exclude_modules = self.default_exclude_modules
|
|
self.common_structure = common_structure
|
|
if self.common_structure:
|
|
self.structure_mapping = CommonStructureMap.load(self.backbone_model)
|
|
else:
|
|
self.structure_mapping = None
|
|
if unfrozen_modules is None:
|
|
self.unfrozen_modules = self.default_unfrozen_modules
|
|
if self.common_structure and self.structure_mapping is None:
|
|
raise RuntimeError("Using common structure but the structure mapping is None")
|
|
|
|
def forward(self, *args, **kwargs) -> "RuntimeError":
|
|
r"""
|
|
.. warning::
|
|
|
|
Removed method. As the model is a delta model, which should be attached to a backbone model \
|
|
and can't forward any data by itself. Please using the backbone model's forward function \
|
|
after attach the delta model to the backbone.
|
|
"""
|
|
raise RuntimeError("This is a delta model, which should be attached to a backbone model \
|
|
and can't forward any data by itself. Please using the backbone model's forward function \
|
|
after attach the delta model to the backbone. ")
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Union[BaseDeltaConfig, dict], backbone_model: nn.Module, check_hash=True, **kwargs):
|
|
r"""Initialize a delta model from a config object or a dict containing the configs. To temperarily change
|
|
a value in the config, pass it through kwargs. If the config has a backbone model's hash, which means it is
|
|
a finetuned delta model's config, then we will compare the hash in the config and the newly caculated to ensure
|
|
the finedtuned delta model is trained on the passed backbone_model. Pass ``check_hash=False`` to disable the
|
|
checking.
|
|
|
|
Args:
|
|
config (:obj:`BaseDeltaConfig` or :obj:`dict`) A config object or a dict that contains the necessary value to
|
|
initialize the delta model.
|
|
backbone_model (:obj:`nn.Module`) A pytorch module that will be pass into the delta model as the backbone
|
|
model. modifications will be made in place in the backbone model.
|
|
check_hash (:obj:`bool`, default to ``True``) Whether to check hash of the backbone model and the config's
|
|
backbone hash.
|
|
kwargs: Any configurations that are passed to update the config object. #TODO unit test needed.
|
|
"""
|
|
supported_keys = get_arg_names(cls.__init__) + get_arg_names(DeltaBase.__init__)
|
|
config_dict = config.to_dict()
|
|
for key in list(config_dict.keys()):
|
|
if key not in supported_keys:
|
|
config_dict.pop(key)
|
|
return cls(backbone_model, **config_dict)
|
|
|
|
|
|
def add_all_delta_to_backbone(self,
|
|
backbone: nn.Module,
|
|
modified_modules: List[str],
|
|
) -> nn.Module:
|
|
r"""The main function to add delta models to the backbone model based on the :obj:`modified_modules`.
|
|
|
|
|
|
Args:
|
|
backbone_model (:obj:`nn.Module`, *required*) backbone model that the delta models are build opon. The
|
|
modification to the backbone model are in place.
|
|
modified_modules (:obj:`List[str]`, *optional*, default to :obj:`None`) The modules are subjected to update.
|
|
leave this argument :obj:`None` will make the delta model return to the default setting, which add the delta
|
|
models to the position experimented the paper. In this setting, the common structure mapping is loaded to
|
|
addressing the corresponding modules.
|
|
|
|
Returns:
|
|
:obj:`nn.Module` The modified backbone model.
|
|
|
|
"""
|
|
self.plm_total_params = sum(p.numel() for p in backbone.parameters())
|
|
# create a new key list to avoid recursion.
|
|
backbone_key_list = [key for key, _ in backbone.named_modules()]
|
|
for key in backbone_key_list:
|
|
if self.find_key(key, modified_modules): #TODO may have bugs when commonstructure has a virtual node and it's refered
|
|
logger.debug("find key: {}".format(key))
|
|
self.update_module(backbone, key)
|
|
self._pseudo_data_to_instantiate(backbone)
|
|
# mark the paratmers that are the delta parameters for easily displaying the delta_paramters.
|
|
self.mark_as_delta()
|
|
return backbone
|
|
|
|
|
|
|
|
def mark_as_delta(self, module: nn.Module=None,):
|
|
r"""[NODOC] Mark :obj:`module`'s all parameters as delta parameters by setting a ``_is_delta`` attribute to each of them.
|
|
Generally, it is used after creating the delta modules. By leaving module to :obj:`None`, it will mark all the parameters in the
|
|
delta model as ``_is_delta``.
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`): The module to mark as delta.
|
|
"""
|
|
if module is None:
|
|
module=self # all the parameters in the delta model.
|
|
for p in module.parameters():
|
|
setattr(p, "_is_delta", True)
|
|
|
|
def update_module(self, module: nn.Module, key: str):
|
|
r"""Update a module specified by :obj:`key`. The method is reimplemented in each specific delta model.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
|
|
def freeze_module(self,
|
|
module: Optional[nn.Module] = None,
|
|
exclude: Optional[List[str]] = None,
|
|
set_state_dict: Optional[bool]=True,
|
|
):
|
|
r"""Freeze the parameters of plm. Leave the parameters in exclude untouched.
|
|
deltas module is filtered with ``_is_delta`` attributes because it may have parameter sharing to the main
|
|
model, (e.g., bias term)
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`, *optional*, default to :obj:`None`): The module of which some parts are frozen.
|
|
If left with :obj:`None`, the function will the self.backbone_model as the module to be frozen.
|
|
exclude (:obj:`List[str]`, *optional*, default to ``["deltas"]``): The parameters that don't need to
|
|
be freezed. Default to all the delta parameters.
|
|
set_state_dict (:obj:`bool`, *optional*, default to :obj:`True`): Whether setting the backbone model's state
|
|
dict to all the parameters that still need grad.
|
|
prefix (:obj:`str`, *optional*, default to ``""``): A parameters that are used for recursive frozen.
|
|
Should not be changed by passing argument other than ``""``.
|
|
|
|
"""
|
|
if exclude is None:
|
|
exclude = self.unfrozen_modules
|
|
|
|
if module is None:
|
|
module = self.backbone_model
|
|
self._freeze_module_recursive(module, exclude, "") # modify the active state dict that still need grad
|
|
if set_state_dict:
|
|
self.set_active_state_dict(module)
|
|
|
|
def _freeze_module_recursive(self,
|
|
module: Optional[nn.Module] = None,
|
|
exclude: Optional[List[str]] = None,
|
|
prefix=""):
|
|
r"""[NODOC] Freeze the parameters of plm. Leave the parameters in exclude untouched.
|
|
deltas module is filtered with ``_is_delta`` attributes because it may have parameter sharing to the main
|
|
model, (e.g., bias term)
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`, *optional*, default to :obj:`None`): The module of which some parts are frozen.
|
|
If left with :obj:`None`, the function will the self.backbone_model as the module to be frozen.
|
|
exclude (:obj:`List[str]`, *optional*, default to ``["deltas"]``): The parameters that don't need to
|
|
be freezed. Default to all the delta parameters.
|
|
set_state_dict (:obj:`bool`, *optional*, default to :obj:`True`): Whether setting the backbone model's state
|
|
dict to all the parameters that still need grad.
|
|
prefix (:obj:`str`, *optional*, default to ``""``): A parameters that are used for recursive frozen.
|
|
Should not be changed by passing argument other than ``""``.
|
|
|
|
"""
|
|
|
|
if is_leaf_module(module):
|
|
for n, p in module.named_parameters():
|
|
if self.find_key(".".join([prefix,n]), exclude):
|
|
continue
|
|
if "deltas" not in exclude or (not (hasattr(p, "_is_delta") and getattr(p, "_is_delta"))):
|
|
p.requires_grad = False
|
|
return
|
|
else:
|
|
for n, c in module.named_children():
|
|
if self.find_key(".".join([prefix,n]), exclude): # if found, untouch the parameters
|
|
continue
|
|
else: # firstly freeze the non module params, then go deeper.
|
|
params = non_module_param(module)
|
|
for n, p in params:
|
|
if "deltas" not in exclude or (not (hasattr(p, "_is_delta") and getattr(p, "_is_delta"))):
|
|
p.requires_grad = False
|
|
self._freeze_module_recursive(c, exclude=exclude, prefix=".".join([prefix,n]) )
|
|
|
|
|
|
|
|
|
|
|
|
def find_key(self, key: str, target_list: List[str]):
|
|
r"""Check whether any target string is in the key or in the tail of the key, i.e.,
|
|
|
|
Args:
|
|
key (:obj:`str`): The key (name) of a submodule in a ancestor module.
|
|
E.g., model.encoder.layer.0.attention
|
|
target_list (List[Union[:obj:`str`, :obj:`re.Pattern`]]): The target list that we try to match ``key`` with. E.g., ["attention"]
|
|
|
|
Returns:
|
|
:obj:`bool` True if the key matchs the target list.
|
|
"""
|
|
for x in self.exclude_modules:
|
|
if key.startswith(x): # start with the excluded key
|
|
return False
|
|
if self.common_structure:
|
|
key = self.structure_mapping.transform(key, strict=False)
|
|
if not key:
|
|
return False
|
|
try:
|
|
return endswith_in(key, target_list)
|
|
except:
|
|
raise RuntimeError("find_key exception")
|
|
|
|
def _pseudo_data_to_instantiate(self, module: Optional[nn.Module]=None):
|
|
r"""Create a pseudo_data into the module to know the dimemsion of each tensor in the computation graph.
|
|
First try to use the dummy_inputs of the pretrained model. If the model has no dummy_inputs, will try to create
|
|
integer tensor as the pseudo_input, if ``decoder_input_ids`` is in the model's forward function, additional create it.
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`, *optional*, default to :obj:`None`): The backbone model.
|
|
|
|
"""
|
|
if module is None:
|
|
module = self.backbone_model
|
|
try:
|
|
dummy_inputs = module.dummy_inputs
|
|
module(**dummy_inputs)
|
|
except AttributeError:
|
|
device = get_device(module)
|
|
logger.warning("No dummy_inputs attributes, create a common input_ids for input.")
|
|
pseudo_input = torch.tensor([[0,0]]).to(device)
|
|
if "decoder_input_ids" in signature(module.forward).args:
|
|
module(pseudo_input, decoder_input_ids = pseudo_input)
|
|
else:
|
|
module(pseudo_input)
|
|
|
|
def trainable_parameters_names(self, module: Optional[nn.Module]=None):
|
|
r"""[NODOC] A small sugar function to return all the trainable parameter's name in the (by default, backbone) model.
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`): of which module we want to know the trainable paramemters' name.
|
|
|
|
Returns:
|
|
:obj:`List[str]`
|
|
"""
|
|
if module is None:
|
|
module = self.backbone_model
|
|
return [n for n,p in module.named_parameters() if p.requires_grad]
|
|
|
|
def frozen_parameters_names(self, module: Optional[nn.Module]=None):
|
|
r"""[NODOC] A small sugar function to return all the frozen parameters' name in the (by default, backbone) model.
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`): of which module we want to know the frozen paramemters' name.
|
|
|
|
Returns:
|
|
:obj:`List[str]`
|
|
"""
|
|
if module is None:
|
|
module = self.backbone_model
|
|
return [n for n,p in module.named_parameters() if not p.requires_grad]
|
|
|
|
def trainable_parameters(self,module: Optional[nn.Module]=None):
|
|
r"""[NODOC] A small sugar function to return all the frozen parameters in the (by default, backbone) model.
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`): of which module we want to know the frozen paramemters.
|
|
|
|
Returns:
|
|
:obj:`List[nn.Parameter]`
|
|
"""
|
|
if module is None:
|
|
module = self
|
|
return [p for n,p in module.named_parameters() if p.requires_grad]
|
|
|
|
|
|
def num_trainable_parameters(self, module: Optional[nn.Module]=None):
|
|
r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to
|
|
compute the trainable rate.
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters.
|
|
|
|
Returns:
|
|
:obj:`List[nn.Parameter]`
|
|
"""
|
|
if module is None:
|
|
module = self
|
|
pnum_tot = 0
|
|
for param in module.parameters():
|
|
if param.requires_grad:
|
|
pnum_tot += param.numel()
|
|
return pnum_tot
|
|
|
|
def num_total_parameters(self, module: Optional[nn.Module]=None):
|
|
r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to
|
|
compute the trainable rate.
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters.
|
|
|
|
Returns:
|
|
:obj:`List[nn.Parameter]`
|
|
"""
|
|
if module is None:
|
|
module = self
|
|
pnum_tot = 0
|
|
for param in module.parameters():
|
|
pnum_tot += param.numel()
|
|
return pnum_tot
|
|
|
|
|
|
|
|
def find_module(self, root_module: nn.Module, key:str):
|
|
r"""Find the module using a key and the root module. Return both the parent reference, the child name and reference.
|
|
|
|
Args:
|
|
root_module (:obj:`root_module`): The root_module to find the sub module in
|
|
key (:obj:`str`): The relative key to the root module.
|
|
|
|
Returns:
|
|
(:obj:`nn.Module`, :obj:`str`, :obj:`nn.Module`):
|
|
* A reference to the parent module of the target module, mainly for substuting the target module.
|
|
* The key of the target module relevant to its parent module
|
|
* Target module.
|
|
"""
|
|
sub_keys = key.split(".")
|
|
parent_module = root_module
|
|
for sub_key in sub_keys[:-1]:
|
|
parent_module = getattr(parent_module, sub_key)
|
|
module = getattr(parent_module, sub_keys[-1])
|
|
return parent_module, sub_keys[-1], module
|
|
|
|
def _register_delta_infos(self, parent_module, _delta_info):
|
|
r"""Register the delta infomation.
|
|
Automatically incrementing the suffix for repeated delta_names
|
|
"""
|
|
_delta_infos = getattr(parent_module, "_delta_infos", [])
|
|
if len(_delta_infos) > 0: # check if duplicated name
|
|
list_of_deltas = [d['delta_name'] for d in _delta_infos]
|
|
cur_name = _delta_info['delta_name']
|
|
if cur_name in list_of_deltas:
|
|
cur_name = cur_name + "_1"
|
|
counter = 1
|
|
while cur_name in list_of_deltas:
|
|
counter += 1
|
|
cur_name = cur_name.split("_")[0] + "_"+str(counter)
|
|
_delta_info["delta_name"] = cur_name
|
|
_delta_infos.append(_delta_info)
|
|
setattr(parent_module, "_delta_infos", _delta_infos)
|
|
|
|
def replace_module(self,
|
|
parent_module: nn.Module,
|
|
child_name: str,
|
|
child_module: nn.Module,
|
|
new_module: nn.Module,
|
|
delta_name: Optional[str] = "delta",
|
|
):
|
|
r"""Replace a module's child module with the new_module(a delta module). Used by delta method based on direct
|
|
replacement, such as :class:`opendelta.delta_modules.lora.LoraModel`.
|
|
|
|
Args:
|
|
parent_module (:obj:`nn.Module`): The parent module of the replacement.
|
|
child_name (:obj:`str`): The chird module's name, i.e., parent_module.child_name give us child_module
|
|
child_module (:obj:`nn.Module`): The original child module.
|
|
new_module (:obj:`nn.Module`): The delta module.
|
|
delta_name (:obj:`str`, *optional*, default ot ``delta``): The name of the delta module, used for recording.
|
|
parent_module.delta_name WILL NOT give you the delta module.
|
|
"""
|
|
self.delta_modules.append(new_module)
|
|
setattr(parent_module, child_name, new_module)
|
|
# register delta info
|
|
_delta_info = {"method": "replace",
|
|
"delta_module": new_module,
|
|
"child_name": child_name,
|
|
"org_module": child_module,
|
|
"delta_name": delta_name,
|
|
"delta_belong": self,
|
|
"state": "on"}
|
|
self._register_delta_infos(parent_module=parent_module,
|
|
_delta_info = _delta_info,
|
|
)
|
|
|
|
|
|
def modify_module(self, module: nn.Module):
|
|
r"""Modify the inside parameteres of a module. This method will be reimplemented in different
|
|
derived class if needed.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def insert_sequential_module(self, module, delta_module=None, delta_name='delta', strict=False, _delta_info=None):
|
|
r"""insert a module (previous not exists in the code base) before/after a module. Specifically, it modifies the forward
|
|
function of the original module to firstly pass the arguments into the new module's forward function and then pass
|
|
it into the original ones. The new module can also be inserted after the original module with similar mechanism.
|
|
|
|
When implementing the new module , researchers should be aware of the components of arguments of the original module's forward function.
|
|
|
|
Args:
|
|
module: (:obj:`nn.Module`): The (sub)module to inserted a delta module.
|
|
delta_module: (:obj:`DeltaBase`): The delta module to be inserted.
|
|
name: (:obj:`str`, *optional*): The name of the delta in the backbone module.
|
|
strict: (:obj:`bool`, *optional*): Whether to prohibit modify a modified module.
|
|
_delta_info (:obj:`Dict`, *optional*): Used in attach(), reattach a delta module to backbone. The info of
|
|
original delta is passed through ``_delta_info``.
|
|
|
|
"""
|
|
def _caller(_org_func, org_module, delta_name, *args, **kwargs):
|
|
args = args[1:] # the first argument here is ``self``
|
|
delta_module = getattr(org_module, delta_name)
|
|
if hasattr(delta_module, "pre_forward"):# is not None:
|
|
args, kwargs = delta_module.pre_forward(*args, **kwargs)
|
|
# from IPython import embed
|
|
# embed(header = "true")
|
|
ret = _org_func(*args, **kwargs)
|
|
if hasattr(delta_module, "post_forward"):# is not None:
|
|
ret = delta_module.post_forward(ret)
|
|
return ret
|
|
|
|
|
|
if strict:
|
|
if hasattr(module.forward, "__wrapped__"):
|
|
raise RuntimeWarning("The forward function might have been wrapped by a decorator, is it intended?")
|
|
|
|
# record info for plug and unplug and nested wrap
|
|
if _delta_info is None:
|
|
if delta_module is None:
|
|
raise RuntimeError("delta module can't be none to ensure successful replicate of the parent module.")
|
|
|
|
_delta_info = {"method": "insert_sequential",
|
|
"delta_module": delta_module,
|
|
"delta_name": delta_name,
|
|
"delta_belong": self,
|
|
"state": "on"}
|
|
self._register_delta_infos(parent_module=module,
|
|
_delta_info = _delta_info)
|
|
else:
|
|
delta_module = _delta_info["delta_module"]
|
|
delta_name = _delta_info["delta_name"]
|
|
|
|
setattr(module, _delta_info['delta_name'], _delta_info["delta_module"])
|
|
|
|
new_forward = decorate(module.forward, _caller, extras=(module, _delta_info['delta_name']), kwsyntax=True) # decorator.decorate helps preserving the functions metadata (signature, etc.).
|
|
module.forward = new_forward.__get__(module, type(module)) # func.__get__(object, type(object)) register a function as an object's method
|
|
# for DataParallel's copy behavior. Experimental:
|
|
# may have bugs when module.forward is nestedly wrapped.
|
|
module._replicate_for_data_parallel = new_replicate_for_data_parallel.__get__(module, type(module))
|
|
|
|
|
|
def insert_parallel_module(self, module, delta_module=None, delta_name='delta', strict=False, _delta_info=None):
|
|
"""insert a module (previous not exists in the code base) across a module. Specifically, it modifies the forward
|
|
function of the original module to firstly pass the arguments into the delta model's forward function and set
|
|
aside the calculation result. Then combine it with the calculation result output from the backbone module.
|
|
|
|
When implementing the new module , researchers should be aware of the arguments and keywards of the original module's forward function.
|
|
|
|
Args:
|
|
module: (:obj:`nn.Module`): The (sub)module to inserted a delta module.
|
|
delta_module: (:obj:`DeltaBase`): The delta module to be inserted.
|
|
name: (:obj:`str`, *optional*): The name of the delta in the backbone module.
|
|
strict: (:obj:`bool`, *optional*): Whether to prohibit modify a modified module.
|
|
_delta_info (:obj:`Dict`, *optional*): Used in attach(), reattach a delta module to backbone. The info of
|
|
original delta is passed through ``_delta_info``.
|
|
|
|
"""
|
|
|
|
def _caller(_org_func, org_module, delta_name, *args, **kwargs):
|
|
args = args[1:] # the first argument here is ``self``
|
|
delta_module = getattr(org_module, delta_name)
|
|
ret_1 = _org_func(*args, **kwargs)
|
|
ret_2 = delta_module.forward(*args, **kwargs)
|
|
return ret_1 + ret_2
|
|
|
|
if strict:
|
|
if hasattr(module.forward, "__wrapped__"):
|
|
raise RuntimeWarning("The forward function might have been wrapped by a decorator, is it intended?")
|
|
|
|
# record info for plug and unplug and nested wrap
|
|
if _delta_info is None:
|
|
if delta_module is None:
|
|
raise RuntimeError("delta module can't be none to ensure successful replicate of the parent module.")
|
|
|
|
_delta_info = {"method": "insert_parallel",
|
|
"delta_module": delta_module,
|
|
"delta_name": delta_name,
|
|
"delta_belong": self,
|
|
"state": "on"}
|
|
self._register_delta_infos(parent_module=module,
|
|
_delta_info = _delta_info)
|
|
else:
|
|
delta_module = _delta_info["delta_module"]
|
|
delta_name = _delta_info["delta_name"]
|
|
|
|
setattr(module, _delta_info['delta_name'], _delta_info["delta_module"])
|
|
|
|
new_forward = decorate(module.forward, _caller, extras=(module, _delta_info['delta_name']), kwsyntax=True) # decorator.decorate helps preserving the functions metadata (signature, etc.).
|
|
module.forward = new_forward.__get__(module, type(module)) # func.__get__(object, type(object)) register a function as an object's method
|
|
# for DataParallel's copy behavior. Experimental:
|
|
# may have bugs when module.forward is nestedly wrapped.
|
|
module._replicate_for_data_parallel = new_replicate_for_data_parallel.__get__(module, type(module))
|
|
|
|
|
|
def set_active_state_dict(self, module: nn.Module):
|
|
r"""modify the state_dict function of the model (by default, the backbone model) to return only the tunable part.
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`): The module modified. The modification is in-place.
|
|
"""
|
|
def _caller(_org_func, includes, *args, **kwargs):
|
|
state_dict = _org_func(*args, **kwargs)
|
|
keys = list(state_dict.keys())
|
|
for n in keys:
|
|
if n not in includes:
|
|
state_dict.pop(n)
|
|
return state_dict
|
|
includes = self.trainable_parameters_names(module) # use excludes will have trouble when the model have shared weights
|
|
# print(includes, "grad:",self.backbone_model.plm.lm_head.weight.requires_grad)
|
|
# exit()
|
|
if hasattr(module.state_dict, "__wrapped__"):
|
|
raise RuntimeWarning("The forward function might have been wrapped by a decorator, is it intended? Do you freeze the parameters twice?")
|
|
module.state_dict = decorate(module.state_dict, _caller, extras=(includes,), kwsyntax=True) # decorator.decorate helps preserving the functions metadata (signature, etc.).
|
|
|
|
def _load_state_dict_into_backbone(self, backbone_model: nn.Module = None, state_dict: dict = {}):
|
|
r"""[NODOC]
|
|
"""
|
|
if backbone_model is None:
|
|
backbone_model = self.backbone_model
|
|
self.backbone_model.load_state_dict(state_dict, strict=False)
|
|
|
|
def create_config_from_model(self, ):
|
|
r"""[NODOC] If the delta model was built by directly passing arguments, instead of passing a config object.
|
|
create the config of the delta model for saving the delta model.
|
|
"""
|
|
# common_attributes
|
|
config = self.config_class()
|
|
config_keys = signature(config.__init__)[0] + signature(super(self.config_class, config).__init__)[0]
|
|
|
|
for key in config_keys:
|
|
val = getattr(self, key) if hasattr(self, key) else None
|
|
setattr(config, key, val)
|
|
config.delta_type = self.delta_type
|
|
self.config = config
|
|
|
|
|
|
def log(self, module=None, delta_ratio=True, trainable_ratio=True, visualization=True, cuda_memory=True):
|
|
r"""Log and visualize the result of applying delta.
|
|
Possible Options are ``trainable_ratio``,
|
|
``visualization``, ``delta_ratio``.
|
|
|
|
Args:
|
|
delta_ratio (:obj:`bool`, *optional*): Whether computing the ratio of parameters in the delta modules.
|
|
trainable_ratio (:obj:`bool`, *optional*): Whether computing the ratio of trainable parameters.
|
|
visualization (:obj:`bool`, *optional*): Whether visualize the parameter information of the modified backbone.
|
|
|
|
"""
|
|
if module is None:
|
|
module = self.backbone_model
|
|
|
|
|
|
if visualization:
|
|
from opendelta import Visualization
|
|
Visualization(module).structure_graph()
|
|
if trainable_ratio:
|
|
n_trainable = self.num_trainable_parameters(module)
|
|
n_total = self.num_total_parameters(module)
|
|
logger.info("Trainable Ratio: {:2f}%".format(n_trainable/n_total*100))
|
|
if delta_ratio:
|
|
n_delta = self.num_delta_parameters(module)
|
|
n_total = self.num_total_parameters(module)
|
|
logger.info("Delta Parameter Ratio: {:2f}%".format(n_delta/n_total*100))
|
|
if cuda_memory:
|
|
cudamem = 0
|
|
maxcudamem = 0
|
|
for device_id in range(torch.cuda.device_count()):
|
|
cudamem += torch.cuda.memory_allocated(f"cuda:{device_id}")/1024**3
|
|
maxcudamem += torch.cuda.max_memory_allocated(f"cuda:{device_id}")/1024**3
|
|
logger.info("Static Memory {:.2f} GB, Max Memory {:.2f} GB".format(cudamem, maxcudamem))
|
|
|
|
|
|
|
|
def num_delta_parameters(self, module: Optional[nn.Module]=None):
|
|
r"""[NODOC] A small sugar function to get the number of trainable parameter in the backbone model. Often used to
|
|
compute the trainable rate.
|
|
|
|
Args:
|
|
module (:obj:`nn.Module`): of which module we want to know the number of trainable paramemters.
|
|
|
|
Returns:
|
|
:obj:`List[nn.Parameter]`
|
|
"""
|
|
if module is None:
|
|
module = self.backbone_model
|
|
pnum_tot = 0
|
|
for param in module.parameters():
|
|
if hasattr(param, "_is_delta"):
|
|
pnum_tot += param.numel()
|
|
return pnum_tot
|
|
|
|
# Two functions for plug and remove the delta model.
|
|
def attach(self, module: Optional[nn.Module]=None, reset_state_dict=True):
|
|
r"""Reattach the delta modules to the backbone. Note that this method can not be used to create new delta modules.
|
|
Instead, a :meth:`DeltaBase.detach` should precede this method.
|
|
|
|
Args:
|
|
module (:obj:`object`, *optional*, default to :obj:`None`): The backbone module that we
|
|
reattach the deltas to.
|
|
"""
|
|
|
|
if module is None:
|
|
module = self.backbone_model
|
|
|
|
for name, submodule in module.named_modules():
|
|
if hasattr(submodule, "_delta_infos"):
|
|
_delta_infos = getattr(submodule, "_delta_infos")
|
|
for _delta_info in _delta_infos:
|
|
if _delta_info['delta_belong'] is not self:
|
|
continue
|
|
if _delta_info["state"] == "on":
|
|
continue
|
|
|
|
if _delta_info['method'] == "replace":
|
|
setattr(submodule, _delta_info["child_name"], _delta_info['delta_module'])
|
|
elif _delta_info['method'] == "insert_sequential":
|
|
self.insert_sequential_module(module=submodule,
|
|
_delta_info=_delta_info)
|
|
elif _delta_info['method'] == "insert_parallel":
|
|
self.insert_parallel_module(module=submodule,
|
|
_delta_info=_delta_info)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
_delta_info['state'] = "on"
|
|
if reset_state_dict:
|
|
self.set_active_state_dict(module)
|
|
|
|
|
|
|
|
def detach(self, module: Optional[nn.Module]=None, reset_state_dict=True):
|
|
r"""Detach the delta module from the backbone. The delta module is not deleted, but temporarily turned off.
|
|
Use :meth:`DeltaBase.attach` to reattach the delta model to the backbone.
|
|
|
|
Args:
|
|
module (:obj:`object`, *optional*, default to :obj:`None`): The backbone module that we
|
|
detached the deltas from.
|
|
"""
|
|
|
|
if module is None:
|
|
module = self.backbone_model
|
|
|
|
for name, submodule in module.named_modules():
|
|
if hasattr(submodule, "_delta_infos"):
|
|
_delta_infos = getattr(submodule, "_delta_infos")
|
|
for _delta_info in _delta_infos:
|
|
if _delta_info['delta_belong'] is not self:
|
|
continue
|
|
if _delta_info["state"] == "off":
|
|
continue
|
|
|
|
if _delta_info['method'] == "replace":
|
|
setattr(submodule, _delta_info["child_name"], _delta_info['org_module'])
|
|
elif _delta_info['method'] == "insert_sequential":
|
|
if hasattr(submodule.forward, "__wrapped__"):
|
|
submodule.forward = submodule.forward.__wrapped__
|
|
delattr(submodule, _delta_info["delta_name"])
|
|
else:
|
|
raise AttributeError("submodule {}'s forward has no attribute __wrapped__. It's not a wrapped function.".format(name))
|
|
elif _delta_info['method'] == "insert_parallel":
|
|
if hasattr(submodule.forward, "__wrapped__"):
|
|
submodule.forward = submodule.forward.__wrapped__
|
|
delattr(submodule, _delta_info["delta_name"])
|
|
else:
|
|
raise AttributeError("submodule {}'s forward has no attribute __wrapped__. It's not a wrapped function.".format(name))
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
_delta_info['state'] = "off"
|
|
if reset_state_dict:
|
|
try:
|
|
module.state_dict = module.state_dict.__wrapped__
|
|
except AttributeError:
|
|
pass
|
|
|