OpenDeltaMirror/opendelta/auto_delta.py

422 lines
18 KiB
Python

from copy import deepcopy
from typing import Any, Dict, OrderedDict
from opendelta.utils.visualization import Visualization
import torch.nn as nn
from opendelta.utils.logging import get_logger
import importlib
from opendelta.delta_configs import BaseDeltaConfig
logger = get_logger(__name__)
DELTA_CONFIG_MAPPING = {
"lora": "LoraConfig",
"low_rank_adapter": "LowRankAdapterConfig",
"bitfit": "BitFitConfig",
"adapter":"AdapterConfig",
"compacter":"CompacterConfig",
"prefix": "PrefixConfig",
"soft_prompt": "SoftPromptConfig",
}
DELTA_MODEL_MAPPING = {
"lora": "LoraModel",
"low_rank_adapter": "LowRankAdapterModel",
"bitfit": "BitFitModel",
"adapter":"AdapterModel",
"compacter": "CompacterModel",
"prefix": "PrefixModel",
"soft_prompt": "SoftPromptModel",
}
class _LazyConfigMapping(OrderedDict):
"""
A dictionary that lazily load its values when they are requested.
"""
def __init__(self, mapping):
self._mapping = mapping
self._extra_content = {}
self._modules = {}
def __getitem__(self, key):
if key in self._extra_content:
return self._extra_content[key]
if key not in self._mapping:
raise KeyError(key)
value = self._mapping[key]
module_name = key #model_type_to_module_name(key)
# if module_name not in self._modules:
self._modules[module_name] = importlib.import_module(f".{module_name}", "opendelta.delta_models")
return getattr(self._modules[module_name], value)
def keys(self):
return list(self._mapping.keys()) + list(self._extra_content.keys())
def values(self):
return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values())
def items(self):
return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items())
def __iter__(self):
return iter(list(self._mapping.keys()) + list(self._extra_content.keys()))
def __contains__(self, item):
return item in self._mapping or item in self._extra_content
def register(self, key, value):
"""
Register a new configuration in this mapping.
"""
if key in self._mapping.keys():
raise ValueError(f"'{key}' is already used by a Transformers config, pick another name.")
self._extra_content[key] = value
LAZY_CONFIG_MAPPING = _LazyConfigMapping(DELTA_CONFIG_MAPPING)
class AutoDeltaConfig:
r"""
This is a generic configuration class that will be instantiated as one of the configuration classes of the library
when created with the :py:meth:`~AutoConfig.from_pretrained` class method.
This class cannot be instantiated directly using ``__init__()`` (throws an error).
"""
def __init__(self):
raise EnvironmentError(
"AutoConfig is designed to be instantiated "
"using the ``AutoConfig.from_pretrained(pretrained_model_name_or_path)`` method."
)
@classmethod
def from_dict(cls, config_dict: Dict[str, Any], **kwargs):
r""" Instantiate a DeltaConfig according to the dict. Automatically load the config specified by
:obj:`delta_type`.
Args:
config_dict (:obj:`dict`): The dict of configs of delta model.
kwargs: Other keyword argument pass to initialize the config.
>>> config = AutoDeltaConfig.from_dict({"delta_type":"lora"}) # This will load the dault lora config.
>>> config = AutoDeltaConfig.from_dict({"delta_type":"lora", "lora_r":5}) # Will load the default lora config, with lora_r = 5
"""
config_dict = deepcopy(config_dict)
delta_type = config_dict.pop("delta_type", None)
if delta_type is None:
raise RuntimeError("Do not specify a delta type, cannot load the default config")
config_class = LAZY_CONFIG_MAPPING[delta_type]
return config_class.from_dict(config_dict, **kwargs)
@classmethod
def from_finetuned(cls, finetuned_delta_path, **kwargs):
r"""
Instantiate one of the configuration classes of the library from a finetuned delta model configuration.
The configuration class to instantiate is selected based on the ``delta_type`` property of the config object that
is loaded.
Parameters:
finetuned_delta_path (:obj:`str` or :obj:`os.PathLike`, *optional*):
Can be either:
- A string, the *model id* of a finetuned delta model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like ``Davin/lora``, or
namespaced under a user or organization name, like ``DeltaHub/lora_t5-base_mrpc``.
- A path to a *directory* containing a configuration file saved using the
:py:meth:`DeltaBase.save_finetuned` method,
e.g., ``./my_model_directory/``.
- A path or url to a saved configuration JSON *file*, e.g.,
``./my_model_directory/configuration.json``.
The last two option are not tested but inherited from huggingface.
cache_dir (:obj:`str` or :obj:`os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the
standard cache should not be used.
force_download (:obj:`bool`, *optional*, defaults to :obj:`False`):
Whether or not to force the (re-)download the model weights and configuration files and override the
cached versions if they exist.
resume_download (:obj:`bool`, *optional*, defaults to :obj:`False`):
Whether or not to delete incompletely received files. Will attempt to resume the download if such a
file exists.
proxies (:obj:`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
revision(:obj:`str`, *optional*, defaults to ``"main"``):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
return_unused_kwargs (:obj:`bool`, *optional*, defaults to ``False``):
If ``False``, then this function returns just the final configuration object.
If ``True``, then this functions returns a ``Tuple(config, unused_kwargs)`` where *unused_kwargs* is a
dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the
part of ``kwargs`` which has not been used to update ``config`` and is otherwise ignored.
trust_remote_code (:obj:`bool`, *optional*, defaults to ``False``):
Whether or not to allow for custom models defined on the Hub in their own modeling files. This option
should only be set to ``True`` for repositories you trust and in which you have read the code, as it will
execute code present on the Hub on your local machine.
kwargs(additional keyword arguments, *optional*):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the ``return_unused_kwargs`` keyword parameter.
Examples:
.. code-block:: python
from transformers import AutoConfig
delta_config = AutoDeltaConfig.from_finetuned("DeltaHub/lora_t5-base-mrpc")
"""
config_dict, kwargs = BaseDeltaConfig.get_config_dict(finetuned_delta_path, **kwargs)
if "delta_type" in config_dict:
config_class = LAZY_CONFIG_MAPPING[config_dict["delta_type"]]
return config_class.from_dict(config_dict, **kwargs)
else:
# Fallback: use pattern matching on the string.
for pattern, config_class in LAZY_CONFIG_MAPPING.items():
if pattern in str(finetuned_delta_path):
return config_class.from_dict(config_dict, **kwargs)
raise ValueError(
f"Unrecognized model in {finetuned_delta_path}. "
f"Should have a `delta_type` key in the loaded config, or contain one of the following strings "
f"in its name: {', '.join(LAZY_CONFIG_MAPPING.keys())}"
)
### AutoModels below
class _LazyAutoMapping(OrderedDict):
"""
" A mapping config to object (model or tokenizer for instance) that will load keys and values when it is accessed.
Args:
- config_mapping: The map model type to config class
- model_mapping: The map model type to model (or tokenizer) class
"""
def __init__(self, config_mapping, model_mapping):
self._config_mapping = config_mapping
self._reverse_config_mapping = {v: k for k, v in config_mapping.items()}
self._model_mapping = model_mapping
self._extra_content = {}
self._modules = {}
def __getitem__(self, key):
if key in self._extra_content:
return self._extra_content[key]
model_type = self._reverse_config_mapping[key.__name__]
if model_type not in self._model_mapping:
raise KeyError(key)
model_name = self._model_mapping[model_type]
return self._load_attr_from_module(model_type, model_name)
def _load_attr_from_module(self, model_type, attr):
if model_type not in self._modules:
self._modules[model_type] = importlib.import_module(f".{model_type}", "opendelta.delta_models")
return getattribute_from_module(self._modules[model_type], attr)
def keys(self):
mapping_keys = [
self._load_attr_from_module(key, name)
for key, name in self._config_mapping.items()
if key in self._model_mapping.keys()
]
return mapping_keys + list(self._extra_content.keys())
def get(self, key, default):
try:
return self.__getitem__(key)
except KeyError:
return default
def __bool__(self):
return bool(self.keys())
def values(self):
mapping_values = [
self._load_attr_from_module(key, name)
for key, name in self._model_mapping.items()
if key in self._config_mapping.keys()
]
return mapping_values + list(self._extra_content.values())
def items(self):
mapping_items = [
(
self._load_attr_from_module(key, self._config_mapping[key]),
self._load_attr_from_module(key, self._model_mapping[key]),
)
for key in self._model_mapping.keys()
if key in self._config_mapping.keys()
]
return mapping_items + list(self._extra_content.items())
def __iter__(self):
return iter(self.keys())
def __contains__(self, item):
if item in self._extra_content:
return True
if not hasattr(item, "__name__") or item.__name__ not in self._reverse_config_mapping:
return False
model_type = self._reverse_config_mapping[item.__name__]
return model_type in self._model_mapping
def register(self, key, value):
"""
Register a new model in this mapping.
"""
if hasattr(key, "__name__") and key.__name__ in self._reverse_config_mapping:
model_type = self._reverse_config_mapping[key.__name__]
if model_type in self._model_mapping.keys():
raise ValueError(f"'{key}' is already used by a Transformers model.")
self._extra_content[key] = value
LAZY_DELTA_MAPPING = _LazyAutoMapping(DELTA_CONFIG_MAPPING, DELTA_MODEL_MAPPING)
def get_values(model_mapping):
result = []
for model in model_mapping.values():
if isinstance(model, (list, tuple)):
result += list(model)
else:
result.append(model)
return result
def getattribute_from_module(module, attr):
if attr is None:
return None
if isinstance(attr, tuple):
return tuple(getattribute_from_module(module, a) for a in attr)
if hasattr(module, attr):
return getattr(module, attr)
# Some of the mappings have entries model_type -> object of another model type. In that case we try to grab the
# object at the top level.
transformers_module = importlib.import_module("transformers")
return getattribute_from_module(transformers_module, attr)
class AutoDeltaModel:
r"""
"""
_delta_model_mapping = LAZY_DELTA_MAPPING
def __init__(self, *args, **kwargs):
raise EnvironmentError(
f"{self.__class__.__name__} is designed to be instantiated "
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or "
f"`{self.__class__.__name__}.from_config(config)` methods."
)
@classmethod
def from_config(cls, config, backbone_model, **kwargs): #-> "DeltaBase":
r"""Automatically instantiates a delta model based on the :obj:`config`. The delta model correspond to the delta
:obj:`config` will be loaded and initialized using the arguments in :obj:`config`.
.. note::
Only using :meth:`from_config` method will not load the finetuned weight file (e.g., pytorch_model.bin).
Please use from_finetuned directly.
Args:
config (:obj:`BaseDeltaConfig`):
backbone_model (:obj:`nn.Module`):
Examples:
.. code-block:: python
config = AutoDeltaConfig.from_finetuned("DeltaHub/lora_t5-base_mrpc")
delta_model = AutoDeltaModel.from_config(config, backbone_model)
"""
if type(config) in cls._delta_model_mapping.keys():
model_class = cls._delta_model_mapping[type(config)]
return model_class.from_config(config, backbone_model, **kwargs)
raise ValueError(
f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
f"Model type should be one of {', '.join(c.__name__ for c in cls._delta_model_mapping.keys())}."
)
@classmethod
def from_finetuned(cls, finetuned_delta_path, backbone_model, *model_args, **kwargs):
r""" Automatically instantiated a delta model and load the finetuned checkpoints based on the
:obj:`finetuned_delta_path`, which can either be a string pointing to a local path or a url pointint to
the delta hub. It will check the hash after loading the delta model to see whether the correct backbone and
delta checkpoint are used.
Args:
finetuned_delta_path (:obj:`str` or :obj:`os.PathLike`, *optional*):
Can be either:
- A string, the *model id* of a finetuned delta model configuration hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like ``Davin/lora``, or
namespaced under a user or organization name, like ``DeltaHub/lora_t5-base_mrpc``.
- A path to a *directory* containing a configuration file saved using the
:py:meth:`DeltaBase.save_finetuned` method,
e.g., ``./my_model_directory/``.
- A path or url to a saved configuration JSON *file*, e.g.,
``./my_model_directory/configuration.json``.
The last two option are not tested but inherited from huggingface.
backbone_model (:obj:`nn.Module`): The backbone model to be modified.
model_args: Other argument for initialize the model.
kwargs: Other kwargs that will be passed into DeltaBase.from_finetuned.
Example:
.. code-block:: python
delta_model = AutoDeltaModel.from_finetuned("DeltaHub/lora_t5-base-mrpc", backbone_model)
"""
delta_config = kwargs.pop("delta_config", None)
if not isinstance(delta_config, BaseDeltaConfig):
delta_config, kwargs = AutoDeltaConfig.from_finetuned(
finetuned_delta_path, return_unused_kwargs=True, **kwargs
)
if type(delta_config) in cls._delta_model_mapping.keys():
model_class = cls._delta_model_mapping[type(delta_config)]
return model_class.from_finetuned(finetuned_delta_path, backbone_model, *model_args, delta_config=delta_config, **kwargs)
raise ValueError(
f"Unrecognized configuration class {config.__class__} for this kind of AutoModel: {cls.__name__}.\n"
f"Model type should be one of {', '.join(c.__name__ for c in cls._model_mapping.keys())}."
)
if __name__ == "__main__":
config = AutoDeltaConfig.from_dict({"delta_type":"lora", "lora_r": 7})
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("../../plm_cache/roberta-base/", num_labels=2)
# from IPython import embed
delta_model = AutoDeltaModel.from_config(config, model)
delta_model.freeze_module(exclude = ['deltas','classifier'], set_state_dict = True)
# delta_model.save_finetuned("autodelta_try", push_to_hub=True, private=True)
delta_model = AutoDeltaModel.from_finetuned("ShengdingHu/autodelta_try", model, use_auth_token=True)