50 lines
1.8 KiB
Python
50 lines
1.8 KiB
Python
|
# Copyright 2022 Google LLC
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tests for pretrained_efficientnet_encoder."""
|
||
|
|
||
|
import numpy as np
|
||
|
from robotics_transformer.film_efficientnet import film_efficientnet_encoder
|
||
|
from robotics_transformer.film_efficientnet import pretrained_efficientnet_encoder as eff
|
||
|
from skimage import data
|
||
|
import tensorflow as tf
|
||
|
|
||
|
|
||
|
class PretrainedEfficientnetEncoderTest(tf.test.TestCase):
|
||
|
|
||
|
def test_encoding(self):
|
||
|
"""Test that we get a correctly shaped decoding."""
|
||
|
state = np.random.RandomState(0)
|
||
|
context = state.uniform(-1, 1, (10, 512))
|
||
|
model = eff.EfficientNetEncoder()
|
||
|
image = np.expand_dims(data.chelsea(), axis=0) / 255
|
||
|
preds = model(image, context, training=False).numpy()
|
||
|
self.assertEqual(preds.shape, (10, 512))
|
||
|
|
||
|
def test_imagenet_classification(self):
|
||
|
"""Test that we can correctly classify an image of a cat."""
|
||
|
state = np.random.RandomState(0)
|
||
|
context = state.uniform(-1, 1, (10, 512))
|
||
|
model = eff.EfficientNetEncoder(include_top=True)
|
||
|
image = np.expand_dims(data.chelsea(), axis=0) / 255
|
||
|
preds = model._encode(image, context, training=False).numpy()
|
||
|
predicted_names = [
|
||
|
n[1]
|
||
|
for n in film_efficientnet_encoder.decode_predictions(preds, top=3)[0]
|
||
|
]
|
||
|
self.assertIn('tabby', predicted_names)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
tf.test.main()
|