56 lines
1.8 KiB
Python
56 lines
1.8 KiB
Python
|
# Copyright 2022 Google LLC
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tests for transformer."""
|
||
|
from absl.testing import parameterized
|
||
|
from robotics_transformer import transformer
|
||
|
import tensorflow as tf
|
||
|
|
||
|
|
||
|
class TransformerTest(parameterized.TestCase):
|
||
|
|
||
|
def setUp(self):
|
||
|
self._vocab_size = 10
|
||
|
batch_size = 8
|
||
|
sequence_len = 12
|
||
|
self._tokens = tf.random.uniform(
|
||
|
[batch_size, sequence_len, self._vocab_size],
|
||
|
minval=0,
|
||
|
maxval=1,
|
||
|
dtype=tf.dtypes.float32,
|
||
|
)
|
||
|
super(TransformerTest, self).setUp()
|
||
|
|
||
|
@parameterized.parameters(True, False)
|
||
|
def test_transformer_forwardpass(self, return_attention_scores):
|
||
|
network = transformer.Transformer(
|
||
|
num_layers=2,
|
||
|
layer_size=512,
|
||
|
num_heads=4,
|
||
|
feed_forward_size=256,
|
||
|
dropout_rate=0.1,
|
||
|
vocab_size=self._vocab_size,
|
||
|
return_attention_scores=return_attention_scores)
|
||
|
|
||
|
output_tokens, attention_scores = network(self._tokens, attention_mask=None)
|
||
|
self.assertSequenceEqual(self._tokens.shape.as_list(),
|
||
|
output_tokens.shape.as_list())
|
||
|
if return_attention_scores:
|
||
|
self.assertNotEmpty(attention_scores)
|
||
|
else:
|
||
|
self.assertEmpty(attention_scores)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
tf.test.main()
|