38 lines
1.3 KiB
Python
38 lines
1.3 KiB
Python
|
# Copyright 2022 Google LLC
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Tests for token_learner."""
|
||
|
from absl.testing import parameterized
|
||
|
from robotics_transformer.tokenizers import token_learner
|
||
|
import tensorflow as tf
|
||
|
|
||
|
|
||
|
class TokenLearnerTest(parameterized.TestCase):
|
||
|
|
||
|
@parameterized.named_parameters(('sample_input', 512, 8))
|
||
|
def testTokenLearner(self, embedding_dim, num_tokens):
|
||
|
batch = 1
|
||
|
seq = 2
|
||
|
token_learner_layer = token_learner.TokenLearnerModule(
|
||
|
num_tokens=num_tokens)
|
||
|
|
||
|
inputvec = tf.random.normal(shape=(batch * seq, 81, embedding_dim))
|
||
|
|
||
|
learnedtokens = token_learner_layer(inputvec)
|
||
|
self.assertEqual(learnedtokens.shape,
|
||
|
[batch * seq, num_tokens, embedding_dim])
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
tf.test.main()
|