robotics_transformer/film_efficientnet/film_efficientnet_encoder_t...

74 lines
2.6 KiB
Python

# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests that film_efficientnet can detect an image of a cat."""
from absl.testing import parameterized
import numpy as np
from robotics_transformer.film_efficientnet import film_efficientnet_encoder
from skimage import data
import tensorflow as tf
class FilmEfficientnetTest(tf.test.TestCase, parameterized.TestCase):
def _helper(self, include_film, model_variant):
if model_variant == 'b0':
size = 224
fe = film_efficientnet_encoder.EfficientNetB0
elif model_variant == 'b1':
size = 240
fe = film_efficientnet_encoder.EfficientNetB1
elif model_variant == 'b2':
size = 260
fe = film_efficientnet_encoder.EfficientNetB2
elif model_variant == 'b3':
size = 300
fe = film_efficientnet_encoder.EfficientNetB3
elif model_variant == 'b4':
size = 380
fe = film_efficientnet_encoder.EfficientNetB4
elif model_variant == 'b5':
size = 456
fe = film_efficientnet_encoder.EfficientNetB5
elif model_variant == 'b6':
size = 528
fe = film_efficientnet_encoder.EfficientNetB6
elif model_variant == 'b7':
size = 600
fe = film_efficientnet_encoder.EfficientNetB7
else:
raise ValueError(f'Unknown variant: {model_variant}')
fe = fe(include_top=True, weights='imagenet', include_film=include_film)
image = np.expand_dims(data.chelsea(), axis=0)
image = tf.image.resize(image, (size, size))
context = np.random.randn(1, 512)
if include_film:
eff_output = fe(
(film_efficientnet_encoder.preprocess_input(image), context),
training=False)
else:
eff_output = fe(
film_efficientnet_encoder.preprocess_input(image), training=False)
film_preds = film_efficientnet_encoder.decode_predictions(
eff_output.numpy(), top=10)
self.assertIn('tabby', [f[1] for f in film_preds[0]])
@parameterized.parameters([True, False])
def test_keras_equivalence_b3(self, include_film):
self._helper(include_film, 'b3')
if __name__ == '__main__':
tf.test.main()