Merge branch 'dev'

This commit is contained in:
zweien 2022-08-12 16:55:01 +08:00
commit 5d1cb162b9
11 changed files with 558 additions and 20 deletions

View File

@ -3,7 +3,7 @@ Consider the 1d wave equation:
$$
\begin{equation}
\frac{\partial^2u}{\partial t^2}=c\frac{\partial^2u}{\partial x^2},
\frac{\partial^2u}{\partial t^2}=c^2\frac{\partial^2u}{\partial x^2},
\end{equation}
$$
where $c>0$ is unknown and is to be estimated. A group of data pairs $\{x_i, t_i, u_i\}_{i=1,2,\cdot,N}$ is observed.
@ -11,7 +11,7 @@ Then the problem is formulated as:
$$
\min_{u,c} \sum_{i=1,2,\cdots,N} \|u(x_i, t_i)-u_i\|^2\\
s.t. \frac{\partial^2u}{\partial t^2}=c\frac{\partial^2u}{\partial x^2}
s.t. \frac{\partial^2u}{\partial t^2}=c^2\frac{\partial^2u}{\partial x^2}
$$
In the context of PINN, $u$ is parameterized to $u_\theta$.
@ -20,7 +20,7 @@ The problem above is transformed to the discrete form:
$$
\min_{\theta,c}
w_1\sum_{i=1,2,\cdots,N} \|u_\theta(x_i, t_i)-u_i\|^2
+w_2\sum_{i=1,2,\cdots,M}\left|\frac{\partial^2u_\theta(x_i,t_i)}{\partial t^2}-c\frac{\partial^2u_\theta(x_i,t_i)}{\partial x^2}\right|^2.
+w_2\sum_{i=1,2,\cdots,M}\left|\frac{\partial^2u_\theta(x_i,t_i)}{\partial t^2}-c^2\frac{\partial^2u_\theta(x_i,t_i)}{\partial x^2}\right|^2.
$$
## Importing External Data

View File

@ -0,0 +1,25 @@
import idrlnet.shortcut as sc
import math
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
order = 10
s = 0
h = 1
cv = 0.6
x, t = sp.symbols('x t')
for k in range(1, order + 1):
s += (-1) ** (k - 1) / (2 * k - 1) * sp.cos((2 * k - 1) * math.pi * x / 2 / h) * sp.exp(
-(2 * k - 1) ** 2 * math.pi ** 2 / 4 * cv * t / h / h)
p_ratio = s * 4 / math.pi
p_ratio_fn = sc.lambdify_np(p_ratio, ['t', 'x'])
if __name__ == '__main__':
t_num = np.linspace(0.01, 1, 100, endpoint=True)
z_num = np.linspace(0.01, 1, 100, endpoint=True)
tt_num, zz_num = np.meshgrid(t_num, z_num)
p_ratio_num = p_ratio_fn(tt_num, zz_num)
plt.scatter(tt_num, zz_num, c=p_ratio_num, cmap='jet', vmin=0, vmax=1)
plt.show()

View File

@ -0,0 +1,124 @@
import idrlnet.shortcut as sc
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
from Aana import p_ratio_fn
cv = 0.6
x, y = sp.symbols('x y')
p = sp.Function('p')(x, y)
geo = sc.Rectangle((0, 0), (1, 1))
@sc.datanode
class Init(sc.SampleDomain):
def __init__(self):
self.points = geo.sample_boundary(100, sieve=(sp.Eq(y, 0.)))
self.constraints = {'p': 1., 'lambda_p': 1 - np.power(self.points['x'], 5)}
def sampling(self, *args, **kwargs):
return self.points, self.constraints
@sc.datanode
class Interior(sc.SampleDomain):
def __init__(self):
self.points = geo.sample_interior(10000)
self.constraints = {'consolidation': np.zeros_like(self.points['x'])}
def sampling(self, *args, **kwargs):
return self.points, self.constraints
@sc.datanode
class UpperBounds(sc.SampleDomain):
def __init__(self):
self.points = geo.sample_boundary(100, sieve=(sp.Eq(x, 1.)))
self.constraints = {'p': 0.,
'lambda_p': np.power(self.points['y'], 0.2)}
def sampling(self, *args, **kwargs):
return self.points, self.constraints
@sc.datanode
class LowerBounds(sc.SampleDomain):
def __init__(self):
self.points = geo.sample_boundary(100, sieve=(sp.Eq(x, 0.)))
self.constraints = {'normal_gradient_p': 0., }
def sampling(self, *args, **kwargs):
return self.points, self.constraints
pde = sc.ExpressionNode(name='consolidation', expression=p.diff(y) - cv * p.diff(x, 2))
grad = sc.NormalGradient(T='p', dim=2, time=False)
net = sc.get_net_node(inputs=('x', 'y'), outputs=('p',), arch=sc.Arch.mlp, name='net')
s = sc.Solver(sample_domains=(Init(), Interior(), UpperBounds(), LowerBounds()),
netnodes=[net],
pdes=[pde, grad],
max_iter=2000)
s.solve()
@sc.datanode
class MeshInterior(sc.SampleDomain):
def sampling(self, *args, **kwargs):
t_num = np.linspace(0.01, 1, 400, endpoint=True)
z_num = np.linspace(0.01, 1, 100, endpoint=True)
tt_num, zz_num = np.meshgrid(t_num, z_num)
points = {'x': zz_num.reshape(-1, 1), 'y': tt_num.reshape(-1, 1)}
return points, {}
s.sample_domains = (MeshInterior(),)
points = s.infer_step({'MeshInterior': ['x', 'y', 'p']})
x_num = points['MeshInterior']['x'].detach().cpu().numpy().ravel()
y_num = points['MeshInterior']['y'].detach().cpu().numpy().ravel()
p_num = points['MeshInterior']['p'].detach().cpu().numpy().ravel()
_, ax = plt.subplots(3, 1, figsize=(10, 10))
im = ax[0].scatter(y_num, x_num, c=p_num, vmin=0, vmax=1, cmap='jet')
ax[0].set_xlim([0, 1.01])
ax[0].set_ylim([-0.05, 1.05])
ax[0].set_ylabel('z(m)')
divider = make_axes_locatable(ax[0])
cax = divider.append_axes('right', size='2%', pad=0.1)
plt.colorbar(im, cax=cax)
ax[0].set_title('Model Prediction: $p_{pred}=p/p_0(z,t)$')
ax[1].set_xlim([0, 1.01])
ax[1].set_ylim([-0.05, 1.05])
ax[1].set_ylabel('z(m)')
ax[1].set_title('Ground Truth: $p_{true}=p/p_0(z,t)$')
t_num = np.linspace(0.01, 1, 400, endpoint=True)
z_num = np.linspace(0.01, 1, 100, endpoint=True)
tt_num, zz_num = np.meshgrid(t_num, z_num)
p_ratio_num = p_ratio_fn(tt_num, zz_num)
im = ax[1].scatter(tt_num, zz_num, c=p_ratio_num, cmap='jet', vmin=0, vmax=1.)
divider = make_axes_locatable(ax[1])
cax = divider.append_axes('right', size='2%', pad=0.1)
plt.colorbar(im, cax=cax)
im = ax[2].scatter(tt_num, zz_num, c=p_num.reshape(100, 400) - p_ratio_num, cmap='bwr', vmin=-1,
vmax=1)
ax[2].set_xlim([0, 1.01])
ax[2].set_ylim([-0.05, 1.05])
ax[2].set_xlabel('t(yr)')
ax[2].set_ylabel('z(m)')
ax[2].set_title('Error: $p_{pred}-p_{true}$')
divider = make_axes_locatable(ax[2])
cax = divider.append_axes('right', size='2%', pad=0.1)
cbar = plt.colorbar(im, cax=cax)
plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)
plt.savefig('test.png')
plt.show()
plt.close()

View File

@ -0,0 +1,2 @@
`Aana.py` generate the ground truth via truncated analytical expression.
`Boneside.py` solves the consolidation equation.

View File

@ -0,0 +1,234 @@
import idrlnet.shortcut as sc
import torch
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
import abc
from matplotlib import tri
sc.use_gpu(device=0)
INTERVAL = 10000
DENSITY = 10000
r1, r2, r3, r4, r5, r6 = sp.symbols('r1 r2 r3 r4 r5 r6')
plate = sc.Tube2D((-1, -0.5), (1, 0.5))
hole_1 = sc.Circle(center=(-0.6, 0), radius=r1)
hole_2 = sc.Circle(center=(0., 0.), radius=r2)
hole_3 = sc.Circle(center=(0.5, -0.5), radius=r3)
hole_4 = sc.Circle(center=(0.5, 0.5), radius=r4)
hole_5 = sc.Circle(center=(-0.5, -0.5), radius=r5)
hole_6 = sc.Circle(center=(-0.5, 0.5), radius=r6)
geo = plate - hole_1 - hole_2 - hole_3 - hole_4 - hole_5 - hole_6
in_line = sc.Line((-1, -0.5), (-1, 0.5), normal=1)
out_line = sc.Line((1, -0.5), (1, 0.5), normal=1)
param_ranges = {r1: (0.05, 0.2),
r2: (0.05, 0.2),
r3: (0.05, 0.2),
r4: (0.05, 0.2),
r5: (0.05, 0.2),
r6: (0.05, 0.2), }
class ReSampleDomain(sc.SampleDomain, metaclass=abc.ABCMeta):
"""
Resampling collocated points every INTERVAL iterations.
"""
count = 0
points = sc.Variables()
constraints = sc.Variables()
def sampling(self, *args, **kwargs):
if self.count % INTERVAL == 0:
self.do_re_sample()
sc.logger.info("Resampling...")
self.count += 1
return self.points, self.constraints
@abc.abstractmethod
def do_re_sample(self):
pass
@sc.datanode
class InPlane(ReSampleDomain):
def do_re_sample(self):
self.points = sc.Variables(
in_line.sample_boundary(param_ranges=param_ranges, density=DENSITY,
low_discrepancy=True)).to_torch_tensor_()
self.constraints = {'T': torch.ones_like(self.points['x'])}
@sc.datanode
class OutPlane(ReSampleDomain):
def do_re_sample(self):
self.points = sc.Variables(
out_line.sample_boundary(param_ranges=param_ranges, density=DENSITY,
low_discrepancy=True)).to_torch_tensor_()
self.constraints = {'T': torch.zeros_like(self.points['x'])}
@sc.datanode(sigma=10.)
class Boundary(ReSampleDomain):
def do_re_sample(self):
self.points = sc.Variables(
geo.sample_boundary(param_ranges=param_ranges, density=DENSITY, low_discrepancy=True)).to_torch_tensor_()
self.constraints = {'normal_gradient_T': torch.zeros_like(self.points['x'])}
@sc.datanode
class Interior(ReSampleDomain):
def do_re_sample(self):
self.points = sc.Variables(
geo.sample_interior(param_ranges=param_ranges, density=DENSITY, low_discrepancy=True)).to_torch_tensor_()
self.constraints = {'diffusion_T': torch.zeros_like(self.points['x'])}
net = sc.get_net_node(inputs=('x', 'y', 'r1', 'r2', 'r3', 'r4', 'r5', 'r6'), outputs=('T',), name='net',
arch=sc.Arch.mlp_xl)
pde = sc.DiffusionNode(T='T', D=1., Q=0, dim=2, time=False)
grad = sc.NormalGradient('T', dim=2, time=False)
s = sc.Solver(sample_domains=(InPlane(), OutPlane(), Boundary(), Interior()),
netnodes=[net],
pdes=[pde, grad],
max_iter=100000,
schedule_config=dict(scheduler='ExponentialLR', gamma=0.99998))
s.solve()
# Define inference domains.
@sc.datanode
class Inference(sc.SampleDomain):
def sampling(self, *args, **kwargs):
self.points = sc.Variables(
geo.sample_interior(param_ranges=param_ranges, density=20000, low_discrepancy=True)).to_torch_tensor_()
self.constraints = {'T__x': torch.zeros_like(self.points['x']),
'T__y': torch.zeros_like(self.points['x']), }
return self.points, self.constraints
@sc.datanode
class BoundaryInference(sc.SampleDomain):
def sampling(self, *args, **kwargs):
self.points = sc.Variables(
geo.sample_boundary(param_ranges=param_ranges, density=1000, low_discrepancy=True)).to_torch_tensor_()
self.constraints = {'T__x': torch.zeros_like(self.points['x']),
'T__y': torch.zeros_like(self.points['x']), }
return self.points, self.constraints
@sc.datanode
class InPlane(sc.SampleDomain):
def sampling(self, *args, **kwargs):
self.points = sc.Variables(
in_line.sample_boundary(param_ranges=param_ranges, density=1000,
low_discrepancy=True)).to_torch_tensor_()
self.constraints = {'T__x': torch.zeros_like(self.points['x']),
'T__y': torch.zeros_like(self.points['x']), }
return self.points, self.constraints
@sc.datanode
class OutPlane(sc.SampleDomain):
def sampling(self, *args, **kwargs):
self.points = sc.Variables(
out_line.sample_boundary(param_ranges=param_ranges, density=1000,
low_discrepancy=True)).to_torch_tensor_()
self.constraints = {'T__x': torch.zeros_like(self.points['x']),
'T__y': torch.zeros_like(self.points['x']), }
return self.points, self.constraints
s.sample_domains = (InPlane(), OutPlane(), Inference(), BoundaryInference())
count = [0]
def parameter_design(*args):
"""
Do inference and plot the result.
"""
param_ranges[r1] = args[0]
param_ranges[r2] = args[1]
param_ranges[r3] = args[2]
param_ranges[r4] = args[3]
param_ranges[r5] = args[4]
param_ranges[r6] = args[5]
points = s.infer_step({'Inference': ['x', 'y', 'T__x', 'T__y', ],
'BoundaryInference': ['x', 'y', 'T__x', 'T__y', ],
'InPlane': ['x', 'y', 'T__x', 'T__y', ],
'OutPlane': ['x', 'y', 'T__x', 'T__y', ]})
plt.figure(figsize=(8, 4))
fig = plt.gcf()
fig.set_tight_layout(True)
########
num_x = points['BoundaryInference']['x'].detach().cpu().numpy().ravel()
num_y = points['BoundaryInference']['y'].detach().cpu().numpy().ravel()
num_T__x = points['BoundaryInference']['T__x'].detach().cpu().numpy().ravel()
num_T__y = points['BoundaryInference']['T__y'].detach().cpu().numpy().ravel()
num_flux = np.sqrt(num_T__x ** 2 + num_T__y ** 2)
plt.scatter(x=num_x, y=num_y, c=num_flux, s=3, vmin=0, vmax=0.8, cmap='bwr')
########
num_x = points['InPlane']['x'].detach().cpu().numpy().ravel()
num_y = points['InPlane']['y'].detach().cpu().numpy().ravel()
num_T__x = points['InPlane']['T__x'].detach().cpu().numpy().ravel()
num_T__y = points['InPlane']['T__y'].detach().cpu().numpy().ravel()
num_flux = np.sqrt(num_T__x ** 2 + num_T__y ** 2)
plt.scatter(x=num_x, y=num_y, c=num_flux, s=3, vmin=0, vmax=0.8, cmap='bwr')
########
num_x = points['OutPlane']['x'].detach().cpu().numpy().ravel()
num_y = points['OutPlane']['y'].detach().cpu().numpy().ravel()
num_T__x = points['OutPlane']['T__x'].detach().cpu().numpy().ravel()
num_T__y = points['OutPlane']['T__y'].detach().cpu().numpy().ravel()
num_flux = np.sqrt(num_T__x ** 2 + num_T__y ** 2)
plt.scatter(x=num_x, y=num_y, c=num_flux, s=3, vmin=0, vmax=0.8, cmap='bwr')
########
num_x = points['Inference']['x'].detach().cpu().numpy().ravel()
num_y = points['Inference']['y'].detach().cpu().numpy().ravel()
num_T__x = points['Inference']['T__x'].detach().cpu().numpy().ravel()
num_T__y = points['Inference']['T__y'].detach().cpu().numpy().ravel()
num_flux = np.sqrt(num_T__x ** 2 + num_T__y ** 2)
points['Inference']['T_flux'] = num_flux
triang = tri.Triangulation(num_x, num_y)
def apply_mask(triang, alpha=0.4):
triangles = triang.triangles
xtri = num_x[triangles] - np.roll(num_x[triangles], 1, axis=1)
ytri = num_y[triangles] - np.roll(num_y[triangles], 1, axis=1)
maxi = np.max(np.sqrt(xtri ** 2 + ytri ** 2), axis=1)
triang.set_mask(maxi > alpha)
apply_mask(triang, alpha=0.04)
plt.tricontourf(triang, num_flux, 100, vmin=0, vmax=0.8, cmap='bwr')
ax = plt.gca()
ax.set_facecolor('k')
ax.set_xticks([])
ax.set_yticks([])
ax.set_xlim([-1, 1.])
ax.set_ylim([-0.5, 0.5])
plt.savefig("holes.png")
plt.close()
parameter_design(0.14, 0.1, 0.2, 0.09, 0.05, 0.17)

115
examples/ldc/ldc.py Executable file
View File

@ -0,0 +1,115 @@
from idrlnet import shortcut as sc
import sympy as sp
import torch
import numpy as np
from idrlnet.pde_op.equations import NavierStokesNode
from matplotlib import tri
import matplotlib.pyplot as plt
x, y = sp.symbols('x y')
rec = sc.Rectangle((-0.05, -0.05), (0.05, 0.05))
@sc.datanode(name='flow_domain')
class InteriorDomain(sc.SampleDomain):
def __init__(self):
points = rec.sample_interior(400000, bounds={x: (-0.05, 0.05), y: (-0.05, 0.05)})
constraints = sc.Variables({'continuity': torch.zeros(len(points['x']), 1),
'momentum_x': torch.zeros(len(points['x']), 1),
'momentum_y': torch.zeros(len(points['x']), 1)})
points['area'] = np.ones_like(points['area']) * 2.5e-6
constraints['lambda_continuity'] = points['sdf']
constraints['lambda_momentum_x'] = points['sdf']
constraints['lambda_momentum_y'] = points['sdf']
self.points = sc.Variables(points).to_torch_tensor_()
self.constraints = sc.Variables(constraints).to_torch_tensor_()
def sampling(self, *args, **kwargs):
return self.points, self.constraints
@sc.datanode(name='left_right_down')
class LeftRightDownBoundaryDomain(sc.SampleDomain):
def __init__(self):
points = rec.sample_boundary(3333, sieve=(y < 0.05))
constraints = sc.Variables({'u': torch.zeros(len(points['x']), 1), 'v': torch.zeros(len(points['x']), 1)})
points['area'] = np.ones_like(points['area']) * 1e-4
self.points = sc.Variables(points).to_torch_tensor_()
self.constraints = sc.Variables(constraints).to_torch_tensor_()
def sampling(self, *args, **kwargs):
return self.points, self.constraints
@sc.datanode(name='up')
class UpBoundaryDomain(sc.SampleDomain):
def __init__(self):
points = rec.sample_boundary(10000, sieve=sp.Eq(y, 0.05))
points['area'] = np.ones_like(points['area']) * 1e-4
constraints = sc.Variables({'u': torch.ones(len(points['x']), 1), 'v': torch.zeros(len(points['x']), 1)})
constraints['lambda_u'] = 1 - 20 * abs(points['x'].copy())
self.points = sc.Variables(points).to_torch_tensor_()
self.constraints = sc.Variables(constraints).to_torch_tensor_()
def sampling(self, *args, **kwargs):
return self.points, self.constraints
torch.autograd.set_detect_anomaly(True)
net = sc.MLP([2, 100, 100, 100, 100, 3], activation=sc.Activation.tanh, initialization=sc.Initializer.Xavier_uniform,
weight_norm=False)
net_u = sc.NetNode(inputs=('x', 'y',), outputs=('u', 'v', 'p'), net=net, name='net_u')
pde = NavierStokesNode(nu=0.01, rho=1.0, dim=2, time=False)
s = sc.Solver(sample_domains=(InteriorDomain(), LeftRightDownBoundaryDomain(), UpBoundaryDomain()),
netnodes=[net_u],
pdes=[pde],
max_iter=4000,
network_dir='./result/tanh_Xavier_uniform',
)
s.solve()
def interoir_domain_infer():
points = rec.sample_interior(1000000, bounds={x: (-0.05, 0.05), y: (-0.05, 0.05)})
constraints = sc.Variables({'continuity': torch.zeros(len(points['x']), 1),
'momentum_x': torch.zeros(len(points['x']), 1),
'momentum_y': torch.zeros(len(points['x']), 1)})
return points, constraints
data_infer = sc.get_data_node(interoir_domain_infer, name='flow_domain')
s.sample_domains = [data_infer]
pred = s.infer_step({'flow_domain': ['x', 'y', 'v', 'u', 'p']})
num_x = pred['flow_domain']['x'].detach().cpu().numpy().ravel()
num_y = pred['flow_domain']['y'].detach().cpu().numpy().ravel()
num_u = pred['flow_domain']['u'].detach().cpu().numpy().ravel()
num_v = pred['flow_domain']['v'].detach().cpu().numpy().ravel()
num_p = pred['flow_domain']['p'].detach().cpu().numpy().ravel()
triang_total = tri.Triangulation(num_x, num_y)
triang_total = tri.Triangulation(num_x, num_y)
u_pre = num_u.flatten()
fig = plt.figure(figsize=(15, 5))
ax1 = fig.add_subplot(131)
tcf = ax1.tricontourf(triang_total, num_u, 100, cmap="jet")
tc_bar = plt.colorbar(tcf)
ax1.set_title('u')
ax2 = fig.add_subplot(132)
tcf = ax2.tricontourf(triang_total, num_v, 100, cmap="jet")
tc_bar = plt.colorbar(tcf)
ax2.set_title('v')
ax3 = fig.add_subplot(133)
tcf = ax3.tricontourf(triang_total, num_p, 100, cmap="jet")
tc_bar = plt.colorbar(tcf)
ax3.set_title('p')
plt.show()

View File

@ -1,16 +1,43 @@
import torch
from .header import logger
GPU_AVAILABLE = False
GPU_ENABLED = False
# todo more careful check
GPU_ENABLED = True
if torch.cuda.is_available():
try:
_ = torch.Tensor([0.0, 0.0]).cuda()
logger.info("GPU available")
GPU_AVAILABLE = True
except:
logger.info("GPU not available")
GPU_AVAILABLE = False
else:
logger.info("GPU not available")
GPU_AVAILABLE = False
def use_gpu(device=0):
"""Use GPU with device `device`.
Args:
device (torch.device or int): selected device.
"""
if GPU_AVAILABLE:
try:
torch.cuda.set_device(device)
torch.set_default_tensor_type("torch.cuda.FloatTensor")
print("gpu available")
logger.info(f"Using GPU device {device}")
global GPU_ENABLED
GPU_ENABLED = True
except:
print("gpu not available")
GPU_ENABLED = False
else:
print("gpu not available")
GPU_ENABLED = False
logger.warning("Invalid device ordinal")
def use_cpu():
"""
Use CPU.
"""
if GPU_ENABLED:
torch.set_default_tensor_type("torch.FloatTensor")
logger.info(f"Using CPU")

View File

@ -223,7 +223,7 @@ def get_data_nodes(funs: List[Callable], *args, **kwargs) -> Tuple[DataNode]:
class SampleDomain(metaclass=abc.ABCMeta):
"""Template for Callable sampling function."""
"""The Template for Callable sampling functions."""
@abc.abstractmethod
def sampling(self, *args, **kwargs):

View File

@ -4,7 +4,7 @@ import math
from math import pi
from typing import Union, List, Tuple
import numpy as np
from sympy import symbols, Abs, sqrt, Max, Min, cos, sin, log, sign, Heaviside
from sympy import symbols, Abs, sqrt, Max, Min, cos, sin, log, sign, Heaviside, asin
from sympy.vector import CoordSys3D
from .geo import Edge, Geometry1D, Geometry2D, Geometry3D
@ -662,11 +662,21 @@ class Box(Geometry3D):
class Sphere(Geometry3D):
def __init__(self, center, radius):
x, y, z, v_1, v_2, u_1, u_2 = symbols("x y z v_1 v_2 u_1 u_2")
ranges = {v_1: (0, 1), v_2: (0, 1), u_1: (0, 1), u_2: (0, 1)}
r_1 = sqrt(-log(v_1)) * cos(2 * pi * u_1)
r_2 = sqrt(-log(v_1)) * sin(2 * pi * u_1)
r_3 = sqrt(-log(v_2)) * cos(2 * pi * u_2)
x, y, z, v_1, v_2 = symbols("x y z v_1 v_2")
ranges = {v_1: (0, 1), v_2: (0, 1)}
theta = 2 * pi * v_1
r = sqrt(v_2)
phi = 2 * asin(r) # latitude
r_1 = cos(theta) * sin(phi)
r_2 = sin(theta) * sin(phi)
r_3 = cos(phi)
# x, y, z, v_1, v_2, u_1, u_2 = symbols("x y z v_1 v_2 u_1 u_2")
# ranges = {v_1: (0, 1), v_2: (0, 1), u_1: (0, 1), u_2: (0, 1)}
# r_1 = sqrt(-log(v_1)) * cos(2 * pi * u_1)
# r_2 = sqrt(-log(v_1)) * sin(2 * pi * u_1)
# r_3 = sqrt(-log(v_2)) * cos(2 * pi * u_2)
norm = sqrt(r_1 ** 2 + r_2 ** 2 + r_3 ** 2)
edge_1 = Edge(

View File

@ -10,4 +10,4 @@ from idrlnet.callbacks import GradientReceiver
from idrlnet.receivers import Receiver, Signal
from idrlnet.variable import Variables, export_var
from idrlnet.header import logger
from idrlnet import GPU_ENABLED
from idrlnet import GPU_AVAILABLE, GPU_ENABLED, use_gpu

View File

@ -19,3 +19,4 @@ flask==1.1.2
requests==2.25.0
torch>=1.7.1
networkx==2.5.1
protobuf~=3.20