增加战斗模拟部分功能测试用例、测试用例代码、海报修改

This commit is contained in:
timeless28 2016-08-31 10:55:43 +08:00
parent 9fc19b4fa2
commit 353e511ef9
3 changed files with 450 additions and 0 deletions

BIN
robocode.psd Normal file

Binary file not shown.

View File

@ -0,0 +1,450 @@
/**
* Copyright (c) 2001-2016 Mathew A. Nelson and Robocode contributors
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* which accompanies this distribution, and is available at
* http://robocode.sourceforge.net/license/epl-v10.html
*/
package sample;
import robocode.AdvancedRobot;
import static robocode.util.Utils.normalAbsoluteAngle;
import static robocode.util.Utils.normalRelativeAngle;
import java.awt.*;
import java.awt.event.KeyEvent;
import static java.awt.event.KeyEvent.*;
import java.awt.event.MouseEvent;
import java.awt.event.MouseWheelEvent;
import java.awt.Color;
public class SnippetBot extends AdvancedRobot
{
Enemy target; //our current enemy 代表对手包括了对手的所有有用参数
final double PI = Math.PI; //just a constant
int direction = 1; //direction we are heading...1 = forward, -1 = backwards
//我们坦克车头的方向
double firePower; //the power of the shot we will be using - set by do firePower() 设置我们的火力
public void run()
{
target = new Enemy(); //实例化Enemy()
target.distance = 100000; //initialise the distance so that we can select a target
setColors(Color.red,Color.blue,Color.green); //sets the colours of the robot
//the next two lines mean that the turns of the robot, gun and radar are independant
//让gun,radar独立于坦克车
setAdjustGunForRobotTurn(true);
setAdjustRadarForGunTurn(true);
turnRadarRightRadians(2*PI); //turns the radar right around to get a view of the field 以弧度计算旋转一周
while(true)
{
doMovement(); //Move the bot 移动机器人
doFirePower(); //select the fire power to use 选择火力
doScanner(); //Oscillate the scanner over the bot 扫描
doGun(); //move the gun to predict where the enemy will be 预测敌人调整炮管
out.println(target.distance);
fire(firePower); //所有动作完成后开火
execute(); //execute all commands 上面使用的都为AdvancedRobot类中的非阻塞调用
//控制权在我们所有这里用阻塞方法返回控制给机器人
}
}
 
void doFirePower()
{
firePower = 400/target.distance;//selects a bullet power based on our distance away from the target
//根据敌人距离来选择火力,因为本身前进后退为300所以火力不会过大
}
 
void doMovement()
{
if (getTime()%20 == 0) //过20的倍数时间就反转方向
{
//every twenty 'ticks'
direction *= -1; //reverse direction
setAhead(direction*300); //move in that direction
}
setTurnRightRadians(target.bearing + (PI/2)); //every turn move to circle strafe the enemy
//每一时间周期以敌人为中心绕圆运动
}
void doScanner()
{
double radarOffset; //雷达偏移量
if (getTime() - target.ctime > 4) //why来回扫了4个回合都没扫到意味失去了目标再全扫一遍
{
//if we haven't seen anybody for a bit....
radarOffset = 360; //rotate the radar to find a target
}
else
{
//next is the amount we need to rotate the radar by to scan where the target is now
//通过扫描决定雷达旋转的弧度"见基本原理方向剖析及目标锁定www.robochina.org".雷达弧度-敌人角度得到两者相差为旋转值
radarOffset = getRadarHeadingRadians() - absbearing(getX(),getY(),target.x,target.y);
//this adds or subtracts small amounts from the bearing for the radar to produce the wobbling
//and make sure we don't lose the target
//在得到的角度中加或减一点角度让雷达很小的范围内摆而不失去目标
if (radarOffset < 0)
radarOffset -= PI/8; //(0.375)
else
radarOffset += PI/8;
}
//turn the radar
setTurnRadarLeftRadians(NormaliseBearing(radarOffset)); //左转调整转动角度到PI内
}
void doGun()
{
//works out how long it would take a bullet to travel to where the enemy is *now*
//this is the best estimation we have
//计算子弹到达目标的时间长speed = 20 - 3 * power;有计算公式,距离除速度=时间
long time = getTime() + (int)(target.distance/(20-(3*firePower)));
//offsets the gun by the angle to the next shot based on linear targeting provided by the enemy class
//以直线为目标偏移子弹下一次发射的角度这样让子弹射空的几率减少但对付不动的和做圆运动的机器人有问题
//target.guesssX(),target.guessY()为目标移动后的坐标
double gunOffset = getGunHeadingRadians() - absbearing(getX(),getY(),target.guessX(time),target.guessY(time));
setTurnGunLeftRadians(NormaliseBearing(gunOffset)); //调整相对角度到2PI内
}
//if a bearing is not within the -pi to pi range, alters it to provide the shortest angle
double NormaliseBearing(double ang)
{
if (ang > PI)
ang -= 2*PI;
if (ang < -PI)
ang += 2*PI;
return ang;
}
//if a heading is not within the 0 to 2pi range, alters it to provide the shortest angle
double NormaliseHeading(double ang)
{
if (ang > 2*PI)
ang -= 2*PI;
if (ang < 0)
ang += 2*PI;
return ang;
}
//returns the distance between two x,y coordinates '**'
//以两边长求得与对手之间的距离
public double getrange( double x1,double y1, double x2,double y2 )
{
double xo = x2-x1;
double yo = y2-y1;
double h = Math.sqrt( xo*xo + yo*yo );
return h;
}
//gets the absolute bearing between to x,y coordinates
//根据x,y的坐标求出绝对角度"坐标锁定"利用直角坐标系来反求出角度
public double absbearing( double x1,double y1, double x2,double y2 )
{
double xo = x2-x1;
double yo = y2-y1;
double h = getrange( x1,y1, x2,y2 );
if( xo > 0 && yo > 0 )
{
//反正弦定义对边除斜边得弧度.以robocode中的绝对方向系及坐标系参照
//x,y为正右上角为0-90,x正y负右下角为90-180,x,y负左下角180-270,x负y正右上角270-360
//此处要理解robocode中的绝对角度是上为0,下为180如以中心为点划分象限则得到下面的结果
return Math.asin( xo / h );
}
if( xo > 0 && yo < 0 )
{
return Math.PI - Math.asin( xo / h ); //x为正,y为负第二象限角
}
if( xo < 0 && yo < 0 )
{
return Math.PI + Math.asin( -xo / h ); //第三象限内180+角度
}
if( xo < 0 && yo > 0 )
{
return 2.0*Math.PI - Math.asin( -xo / h ); //四象限360-角度
}
return 0;
}
public void onScannedRobot(ScannedRobotEvent e)
{
//if we have found a closer robot....
if ((e.getDistance() < target.distance)||(target.name == e.getName()))
{
//the next line gets the absolute bearing to the point where the bot is
//求得对手的绝对弧度
double absbearing_rad = (getHeadingRadians()+e.getBearingRadians())%(2*PI);
//this section sets all the information about our target
target.name = e.getName();
//求得对手的x,y坐标"robocode基本原理之坐标锁定"文章
target.x = getX()+Math.sin(absbearing_rad)*e.getDistance(); //works out the x coordinate of where the target is
target.y = getY()+Math.cos(absbearing_rad)*e.getDistance(); //works out the y coordinate of where the target is
target.bearing = e.getBearingRadians();
target.head = e.getHeadingRadians();
target.ctime = getTime(); //game time at which this scan was produced 扫描到机器人的游戏时间
target.speed = e.getVelocity(); //得到敌人速度
target.distance = e.getDistance();
}
}
public void onRobotDeath(RobotDeathEvent e)
{
if (e.getName() == target.name)
target.distance = 10000; //this will effectively make it search for a new target
}
}
/*
* This class holds scan data so that we can remember where enemies were
* and what they were doing when we last scanned then.
* You could make a hashtable (with the name of the enemy bot as key)
* or a vector of these so that you can remember where all of your enemies are
* in relation to you.
* This class also holds the guessX and guessY methods. These return where our targeting
* system thinks they will be if they travel in a straight line at the same speed
* as they are travelling now. You just need to pass the time at which you want to know
* where they will be.
* 保存我们扫描到的目标的所有有用数据也可用hashtablevector方法处理所有和我们有关的目标数据(用于群战)
* 中间的guessX,guessY方法是针对做直线均速运动机器人一个策略
*/
class Enemy
{
/*
* ok, we should really be using accessors and mutators here,
* (i.e getName() and setName()) but life's too short.
*/
String name;
public double bearing;
public double head;
public long ctime; //game time that the scan was produced
public double speed;
public double x,y;
public double distance;
public double guessX(long when)
{
//以扫描时和子弹到达的时间差 最大速度=距离, 再用对手的坐标加上移动坐标得到敌人移动后的坐标
long diff = when - ctime;
return x+Math.sin(head)*speed*diff; //目标移动后的坐标
}
public double guessY(long when)
{
long diff = when - ctime;
return y+Math.cos(head)*speed*diff;
}
}

Binary file not shown.