Add: ConvTransposed (#33)

* Add: convTransposed2d operator

* Fix: IT_ASSERT namespace

* Add: nullptr check in as for Ref

* Fix: conv transpose operator and kernel

* Fix: makes PerfEngine singleton

* Add: ConvTransposed test

* Fix: rebase to master (PerfRecord shared_ptr)

* Revert: Ref with nullptr check

Co-authored-by: Liyan Zheng <liyan-zheng@outlook.com>
This commit is contained in:
zhengly123 2022-09-19 15:05:39 +08:00 committed by GitHub
parent d39328afce
commit 8f67a5cc76
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 594 additions and 54 deletions

View File

@ -42,7 +42,7 @@ using HashType = uint64_t; // compatible with std::hash
#define _IT_ASSERT_2(name, info) \ #define _IT_ASSERT_2(name, info) \
(static_cast<bool>(name) \ (static_cast<bool>(name) \
? void(0) \ ? void(0) \
: throw infini::Exception( \ : throw ::infini::Exception( \
std::string("[") + __FILE__ + ":" + std::to_string(__LINE__) + \ std::string("[") + __FILE__ + ":" + std::to_string(__LINE__) + \
"] Assertion failed (" + #name + "): " + #info)) "] Assertion failed (" + #name + "): " + #info))
#define _IT_ASSERT_1(name) _IT_ASSERT_2(name, ""); #define _IT_ASSERT_1(name) _IT_ASSERT_2(name, "");

View File

@ -9,6 +9,10 @@ class PerfEngine {
// TODO: Key should be OpPerfKey + Context(maybe implicat) to support // TODO: Key should be OpPerfKey + Context(maybe implicat) to support
// multiple candiate kernels. // multiple candiate kernels.
using Key = std::pair<KernelAttrs, OpPerfKey>; using Key = std::pair<KernelAttrs, OpPerfKey>;
PerfEngine() = default;
// PerfEngine is singleton
PerfEngine(PerfEngine &other) = delete;
PerfEngine &operator=(PerfEngine const &) = delete;
private: private:
map<Key, PerfRecord> data; map<Key, PerfRecord> data;

View File

@ -1,4 +1,5 @@
#pragma once #pragma once
#include "core/common.h"
#include <functional> // hash #include <functional> // hash
#include <memory> #include <memory>
#include <type_traits> #include <type_traits>

View File

@ -3,7 +3,7 @@
namespace infini { namespace infini {
class ConvObj : public OperatorObj { class ConvBaseObj : public OperatorObj {
public: public:
// When PaddingMode is Other, ConvObj will use padding size (ph, pw) // When PaddingMode is Other, ConvObj will use padding size (ph, pw)
// Otherwise, padding size (ph, pw) will be computed by padding mode // Otherwise, padding size (ph, pw) will be computed by padding mode
@ -13,34 +13,33 @@ class ConvObj : public OperatorObj {
Valid, Valid,
}; };
private: protected:
int ph, pw; int ph, pw;
int sh, sw; int sh, sw;
int dh, dw; int dh, dw;
ActType act;
PaddingMode padding; PaddingMode padding;
// auxiliary attributes // auxiliary attributes. Descripitions stand on a forward perspective,
int n, c, h, w, f, r, s; // i.e., convTransposed2d is not regarded as the backward of conv2d.
int n; // batch size
int c; // input/output channel for conv2d/convTransposed2d
int h, w; // input shape (same for conv2d and convTranposed2d)
int f; // output/input channel for conv2d/convTransposed2d
int r, s; // weight shape
public: public:
// Constructors for explicitly setting padding size // Constructors for explicitly setting padding size
ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output, int ph, ConvBaseObj(OpType opType, TensorVec inputs, Tensor &output, int ph, int pw,
int pw, int sh = 1, int sw = 1, int dh = 1, int dw = 1, int sh, int sw, int dh, int dw, const Tensor &inputInConvFWD,
Tensor bias = nullptr, ActType act = ActType::None); const Tensor &weightInConvFWD);
// Constructors for setting padding mode ConvBaseObj(OpType opType, TensorVec inputs, Tensor &output,
ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output, PaddingMode mode, int sh, int sw, int dh, int dw,
PaddingMode mode = PaddingMode::Same, int sh = 1, int sw = 1, const Tensor &inputInConvFWD, const Tensor &weightInConvFWD);
int dh = 1, int dw = 1, Tensor bias = nullptr,
ActType act = ActType::None);
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
std::string toString() const override; std::string toString() const override;
int numInputs() const override { return 2; } int numInputs() const override { return 2; }
int numOutputs() const override { return 1; } int numOutputs() const override { return 1; }
Tensor getBias() const { return inputs[2]; } Tensor getBias() const { return inputs[2]; }
ActType getAct() const { return act; }
PaddingMode getPaddingMode() const { return padding; } PaddingMode getPaddingMode() const { return padding; }
pair<int, int> inferPaddingSize() const; pair<int, int> inferPaddingSize() const;
@ -53,7 +52,7 @@ class ConvObj : public OperatorObj {
auto getNCHWFRS() const { return tuple(n, c, h, w, f, r, s); } auto getNCHWFRS() const { return tuple(n, c, h, w, f, r, s); }
auto getPadStrideDilation() const { return tuple(ph, pw, sh, sw, dh, dw); } auto getPadStrideDilation() const { return tuple(ph, pw, sh, sw, dh, dw); }
int getChannelPerGroup() const { return inputs[1]->getDims()[1]; } int getChannelPerGroup() const { return inputs[1]->getDims()[1]; }
int getNumGroups() const { return c / getChannelPerGroup(); } virtual int getNumGroups() const = 0;
private: private:
vector<int> getWorkloadVector() const override; vector<int> getWorkloadVector() const override;
@ -62,7 +61,56 @@ class ConvObj : public OperatorObj {
* @brief Set the Auxilary Attributes: nchwrfs and padding (ph, pw) if * @brief Set the Auxilary Attributes: nchwrfs and padding (ph, pw) if
* padding mode is set. This function should be called in constructor. * padding mode is set. This function should be called in constructor.
*/ */
void setAuxilaryAttributes(PaddingMode mode); virtual void setAuxilaryAttributes(PaddingMode mode) = 0;
};
class ConvObj : public ConvBaseObj {
private:
ActType act;
public:
ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output, int ph,
int pw, int sh = 1, int sw = 1, int dh = 1, int dw = 1,
Tensor bias = nullptr, ActType act = ActType::None);
// Constructors for setting padding mode
ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output,
PaddingMode mode = PaddingMode::Same, int sh = 1, int sw = 1,
int dh = 1, int dw = 1, Tensor bias = nullptr,
ActType act = ActType::None);
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
ActType getAct() const { return act; }
int getNumGroups() const override { return c / getChannelPerGroup(); }
private:
void setAuxilaryAttributes(PaddingMode mode) override;
};
class ConvTransposed2dObj : public ConvBaseObj {
private:
int oph, opw;
int group;
ActType act;
public:
ConvTransposed2dObj(GraphObj *graph, Tensor input, Tensor weight,
Tensor output, int ph, int pw, int sh = 1, int sw = 1,
int dh = 1, int dw = 1, int oph = 0, int opw = 0,
int group = 1, Tensor bias = nullptr,
ActType act = ActType::None);
// Constructors for setting padding mode
ConvTransposed2dObj(GraphObj *graph, Tensor input, Tensor weight,
Tensor output, PaddingMode mode = PaddingMode::Same,
int sh = 1, int sw = 1, int dh = 1, int dw = 1,
int oph = 0, int opw = 0, int group = 1,
Tensor bias = nullptr, ActType act = ActType::None);
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;
ActType getAct() const { return act; }
int getNumGroups() const override { return group; }
private:
void setAuxilaryAttributes(PaddingMode mode) override;
}; };
} // namespace infini } // namespace infini

View File

@ -15,7 +15,7 @@ void CpuRuntimeObj::run(const Graph &graph, bool tune, bool profiling) const {
if (!tune && profiling) if (!tune && profiling)
IT_TODO_HALT(); IT_TODO_HALT();
const auto &kernelRegistry = KernelRegistry::getInstance(); const auto &kernelRegistry = KernelRegistry::getInstance();
auto perfEngine = PerfEngine::getInstance(); auto &perfEngine = PerfEngine::getInstance();
// Statistics // Statistics
double totalTime = 0; double totalTime = 0;
std::map<OpType, double> opTime; std::map<OpType, double> opTime;
@ -63,7 +63,7 @@ void CpuRuntimeObj::run(const Graph &graph, bool tune, bool profiling) const {
double RuntimeObj::getPerfTime(const Graph &graph, bool profiling) const { double RuntimeObj::getPerfTime(const Graph &graph, bool profiling) const {
const auto &kernelRegistry = KernelRegistry::getInstance(); const auto &kernelRegistry = KernelRegistry::getInstance();
auto perfEngine = PerfEngine::getInstance(); auto &perfEngine = PerfEngine::getInstance();
// Statistics // Statistics
double totalTime = 0; double totalTime = 0;
std::map<OpType, double> opTime; std::map<OpType, double> opTime;

View File

@ -7,7 +7,7 @@ namespace infini {
void CudaRuntimeObj::runWithoutSync(const Graph &graph, bool tune = false, void CudaRuntimeObj::runWithoutSync(const Graph &graph, bool tune = false,
bool profiling = false) const { bool profiling = false) const {
const auto &kernelRegistry = KernelRegistry::getInstance(); const auto &kernelRegistry = KernelRegistry::getInstance();
auto perfEngine = PerfEngine::getInstance(); auto &perfEngine = PerfEngine::getInstance();
double totalTime = 0; double totalTime = 0;
std::map<OpType, double> opTime; std::map<OpType, double> opTime;
std::map<OpType, int> opCnt; std::map<OpType, int> opCnt;

View File

@ -0,0 +1,289 @@
#include "core/kernel.h"
#include "cuda/cuda_runtime.h"
#include "operators/conv.h"
#include <chrono>
#include <functional>
#include <limits>
#include <tuple>
namespace infini {
struct ConvTransposedCuDnnPerfRecordObj : public PerfRecordObj {
int algo = 0; // cudnnConvolutionBwdDataAlgo_t
int mode = 1;
size_t workspaceSize = 100000;
bool fuseAct = false;
};
using ConvTransposedCuDnnPerfRecord = Ref<ConvTransposedCuDnnPerfRecordObj>;
static constexpr int N_ALGO = 6;
static_assert(N_ALGO == int(CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT),
"Unsupported cuDNN version");
static const cudnnConvolutionBwdDataAlgo_t ALGOS[N_ALGO] = {
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0, /* non-deterministic */
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED};
static const char algo_name[N_ALGO][50] = {
"CUDNN_CONVOLUTION_BWD_DATA_ALGO_0", /* non-deterministic */
"CUDNN_CONVOLUTION_BWD_DATA_ALGO_1",
"CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT",
"CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING",
"CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD",
"CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED"};
static const char math_types[3][50] = {"CUDNN_DEFAULT_MATH",
"CUDNN_TENSOR_OP_MATH",
"CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION"};
static constexpr int N_MODE = 2;
static constexpr cudnnConvolutionMode_t MODES[N_MODE] = {
CUDNN_CONVOLUTION, CUDNN_CROSS_CORRELATION};
class convBackwardDataCudnn : public Kernel {
std::tuple<void *, void *, void *, cudnnTensorDescriptor_t,
cudnnFilterDescriptor_t, cudnnTensorDescriptor_t,
cudnnConvolutionDescriptor_t, cudnnActivationDescriptor_t,
cudnnTensorDescriptor_t>
createCuDNNDescriptor(
const Ref<ConvTransposed2dObj> &op,
const ConvTransposedCuDnnPerfRecordObj &record) const {
void *const inData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const knData = (op->getInputs(1)->getRawDataPtr<void *>());
if (op->getInputs().size() > 2) // Bias is not supported yet
IT_TODO_HALT();
// void *const biasData = (op->getInputs(2)->getRawDataPtr<void
// *>());
void *const outData = (op->getOutput()->getRawDataPtr<void *>());
const auto [n, c, h, w, f, r, s] = op->getNCHWFRS();
const int channelsPerGrp = op->getChannelPerGroup();
const int g = op->getNumGroups();
const auto [ph, pw, sh, sw, dh, dw] = op->getPadStrideDilation();
// IT_ASSERT(g == 1, "Group convolution is not supported yet");
// get inputs
cudnnTensorDescriptor_t inDesc;
checkCudnnError(cudnnCreateTensorDescriptor(&inDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(
inDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, n, f, h, w));
// get kernels
cudnnFilterDescriptor_t knDesc;
checkCudnnError(cudnnCreateFilterDescriptor(&knDesc));
checkCudnnError(cudnnSetFilter4dDescriptor(knDesc, CUDNN_DATA_FLOAT,
CUDNN_TENSOR_NCHW, f,
channelsPerGrp, r, s));
// get bias
cudnnTensorDescriptor_t biasDesc;
checkCudnnError(cudnnCreateTensorDescriptor(&biasDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(
biasDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, f, 1, 1));
// get convlution descriptor
cudnnConvolutionDescriptor_t convDesc;
checkCudnnError(cudnnCreateConvolutionDescriptor(&convDesc));
// TODO: CUDNN_CONVOLUTION is a tunable argument
checkCudnnError(cudnnSetConvolution2dDescriptor(
convDesc, ph, pw, sh, sw, dh, dw, MODES[record.mode],
CUDNN_DATA_FLOAT));
if (g > 1) {
checkCudnnError(cudnnSetConvolutionGroupCount(convDesc, g));
}
// get activation descriptor
cudnnActivationDescriptor_t actDesc;
checkCudnnError(cudnnCreateActivationDescriptor(&actDesc));
// NOT_PROPAGATE_NAN is requierd by
// cudnnConvolotionBiasActivationForward
switch (op->getAct()) {
case ActType::Relu:
checkCudnnError(cudnnSetActivationDescriptor(
actDesc, CUDNN_ACTIVATION_RELU, CUDNN_NOT_PROPAGATE_NAN, 0));
break;
case ActType::Sigmoid:
checkCudnnError(cudnnSetActivationDescriptor(
actDesc, CUDNN_ACTIVATION_SIGMOID, CUDNN_NOT_PROPAGATE_NAN, 0));
break;
case ActType::None:
checkCudnnError(
cudnnSetActivationDescriptor(actDesc, CUDNN_ACTIVATION_IDENTITY,
CUDNN_NOT_PROPAGATE_NAN, 0));
break;
default:
assert(false);
}
const auto &outputShape = op->getOutput()->getDims();
cudnnTensorDescriptor_t outDesc;
checkCudnnError(cudnnCreateTensorDescriptor(&outDesc));
checkCudnnError(cudnnSetTensor4dDescriptor(
outDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, outputShape[0],
outputShape[1], outputShape[2], outputShape[3]));
return tuple(inData, knData, outData, inDesc, knDesc, biasDesc,
convDesc, actDesc, outDesc);
}
bool cuDNNUnfused(const Ref<ConvTransposed2dObj> &op,
const ConvTransposedCuDnnPerfRecordObj &record,
const CudaRuntimeObj *context) const {
cudnnStatus_t stat;
const auto &[inData, knData, outData, inDesc, knDesc, biasDesc,
convDesc, actDesc, outDesc] =
createCuDNNDescriptor(op, record);
size_t wsSize = record.workspaceSize;
CudaPtr wsData = context->getWorkspace(wsSize);
float alpha = 1.f, beta = 0.f;
stat = cudnnConvolutionBackwardData(
context->cudnnHandle(), &alpha, knDesc, knData, inDesc, inData,
convDesc, ALGOS[record.algo], wsData, wsSize, &beta, outDesc,
outData);
if (stat != CUDNN_STATUS_SUCCESS)
return false;
// TODO:
// // bias
// if (bias != nullptr) {
// auto sz = op.getOutputs()[0]->size();
// // TODO: element wise
// t += sz * 2 / 400;
// }
// // act
// if (act != None) {
// stat = cudnnActivationForward(cudnnHandle(), actDesc,
// &alpha, inDesc, inData,
// &beta, outDesc, outData);
// checkCudaError(cudaDeviceSynchronize());
// end = ch::high_resolution_clock::now();
// if (stat != CUDNN_STATUS_SUCCESS) {
// durtime = INFINITY;
// break;
// }
// t +=
// ch::duration_cast<ch::duration<double>>(end -
// beg).count() * 1000; // ms
// }
// best = ConvResult{durtime, ALGOS[i], wsSize, false};
// // w/ bias & act
// for (int j = 0; j < rounds + warmupRounds; ++j) {
// cudnnStatus_t stat;
// if (j == warmupRounds) {
// checkCudaError(cudaDeviceSynchronize());
// beg = ch::high_resolution_clock::now();
// }
// stat = cudnnConvolutionBiasActivationForward(
// cudnnHandle(), &alpha, inDesc, inData, knDesc,
// knData, convDesc, ALGOS[i], wsData, wsSize, &beta,
// outDesc, outData, biasDesc, biasData, actDesc,
// outDesc, outData);
// if (stat != CUDNN_STATUS_SUCCESS) {
// // checkCudnnError(stat);
// // Do not checkCudnnError since not all algorithms
// are
// // supported
// durtime_fuse = INFINITY;
// break;
// }
// }
// Destories in CUDA does not require sync. But cuDNN does not
// state whether sync is required before destories.
checkCudnnError(cudnnDestroyTensorDescriptor(outDesc));
checkCudnnError(cudnnDestroyActivationDescriptor(actDesc));
checkCudnnError(cudnnDestroyConvolutionDescriptor(convDesc));
checkCudnnError(cudnnDestroyTensorDescriptor(biasDesc));
checkCudnnError(cudnnDestroyFilterDescriptor(knDesc));
checkCudnnError(cudnnDestroyTensorDescriptor(inDesc));
return true;
}
void compute(const Operator &op, const RuntimeObj *context) const override {
// with paramters in default ctor
auto record = make_ref<ConvTransposedCuDnnPerfRecordObj>();
compute(op, record, context);
}
PerfRecord tune(const Operator &_op,
const RuntimeObj *_context) const override {
ConvTransposedCuDnnPerfRecordObj ret;
ret.time = std::numeric_limits<double>::max();
auto context = dynamic_cast<const CudaRuntimeObj *>(_context);
auto op = as<ConvTransposed2dObj>(_op);
// Both modes have the same performance. Only run
// cross-correlation.
for (int mode = 1; mode < 2; mode++) {
// Try every possible algorithm of convolution
for (int algo = 0; algo < N_ALGO; algo++) {
ConvTransposedCuDnnPerfRecordObj record;
record.mode = mode;
record.algo = algo;
cudnnStatus_t stat;
const auto &[inData, knData, outData, inDesc, knDesc, biasDesc,
convDesc, actDesc, outDesc] =
createCuDNNDescriptor(op, record);
// get workspace
stat = cudnnGetConvolutionBackwardDataWorkspaceSize(
context->cudnnHandle(), knDesc, inDesc, convDesc, outDesc,
ALGOS[record.algo], &record.workspaceSize);
if (stat != CUDNN_STATUS_SUCCESS)
continue;
CudaPtr wsData = context->getWorkspace(record.workspaceSize);
float alpha = 1.f, beta = 0.f;
stat = cudnnConvolutionBackwardData(
context->cudnnHandle(), &alpha, knDesc, knData, inDesc,
inData, convDesc, ALGOS[record.algo], wsData,
record.workspaceSize, &beta, outDesc, outData);
if (stat != CUDNN_STATUS_SUCCESS)
continue;
record.time = timeit(
[&]() {
cudnnConvolutionBackwardData(
context->cudnnHandle(), &alpha, knDesc, knData,
inDesc, inData, convDesc, ALGOS[record.algo],
wsData, record.workspaceSize, &beta, outDesc,
outData);
},
[&]() { context->sync(); });
// printf("mode:%d algo:%d :%.8lf\n", mode, algo,
// record.time);
// Update the tune result
if (ret.time > record.time)
ret = record;
checkCudnnError(cudnnDestroyTensorDescriptor(outDesc));
checkCudnnError(cudnnDestroyActivationDescriptor(actDesc));
checkCudnnError(cudnnDestroyConvolutionDescriptor(convDesc));
checkCudnnError(cudnnDestroyTensorDescriptor(biasDesc));
checkCudnnError(cudnnDestroyFilterDescriptor(knDesc));
checkCudnnError(cudnnDestroyTensorDescriptor(inDesc));
}
}
// printf("the best algo is %d, the best conv mode is %d\n",
// ret.algo,
// ret.mode);
IT_ASSERT(ret.time < std::numeric_limits<double>::max(), "No valid "
"algorithm "
"found");
return make_ref<ConvTransposedCuDnnPerfRecordObj>(ret);
}
void compute(const Operator &_op, const PerfRecord &_record,
const RuntimeObj *_context) const override {
auto op = as<ConvTransposed2dObj>(_op);
auto record = as<ConvTransposedCuDnnPerfRecordObj>(_record);
auto context = dynamic_cast<const CudaRuntimeObj *>(_context);
bool success = cuDNNUnfused(op, *record, context);
IT_ASSERT(success);
}
};
REGISTER_KERNEL(Device::CUDA, OpType::ConvTrans, DataType::Float32,
convBackwardDataCudnn, "ConvTranposed_cuDNN_CUDA_Float32");
} // namespace infini

View File

@ -2,28 +2,24 @@
namespace infini { namespace infini {
ConvObj::ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output, ConvBaseObj::ConvBaseObj(OpType opType, TensorVec inputs, Tensor &output,
int ph, int pw, int sh, int sw, int dh, int dw, int ph, int pw, int sh, int sw, int dh, int dw,
[[maybe_unused]] Tensor bias, ActType act) const Tensor &inputInConvFWD,
: OperatorObj(OpType::Conv, {input, weight}, {output}), ph(ph), pw(pw), const Tensor &weightInConvFWD)
sh(sh), sw(sw), dh(dh), dw(dw), act(act), padding(PaddingMode::Other) { : OperatorObj(opType, inputs, {output}), ph(ph), pw(pw), sh(sh), sw(sw),
setAuxilaryAttributes(PaddingMode::Other); dh(dh), dw(dw), padding(PaddingMode::Other) {}
IT_ASSERT(checkValid(graph)); ConvBaseObj::ConvBaseObj(OpType opType, TensorVec inputs, Tensor &output,
} PaddingMode mode, int sh, int sw, int dh, int dw,
const Tensor &inputInConvFWD,
ConvObj::ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output, const Tensor &weightInConvFWD)
PaddingMode mode, int sh, int sw, int dh, int dw, : OperatorObj(opType, inputs, {output}), ph(-1), pw(-1), sh(sh), sw(sw),
[[maybe_unused]] Tensor bias, ActType act) dh(dh), dw(dw), padding(mode) {
: OperatorObj(OpType::Conv, {input, weight}, {output}), ph(-1), pw(-1),
sh(sh), sw(sw), dh(dh), dw(dw), act(act), padding(mode) {
IT_ASSERT(mode != PaddingMode::Other); IT_ASSERT(mode != PaddingMode::Other);
setAuxilaryAttributes(mode);
IT_ASSERT(checkValid(graph));
} }
string ConvObj::toString() const { string ConvBaseObj::toString() const {
std::ostringstream os; std::ostringstream os;
os << "Conv[" << getGuid() << "]"; os << OpRegistry::getOpName(getOpType()) << "[" << getGuid() << "]";
os << "("; os << "(";
if (inputs.size() == 2) { if (inputs.size() == 2) {
os << vecToString(inputs[0]->getDims()) << ","; os << vecToString(inputs[0]->getDims()) << ",";
@ -32,13 +28,63 @@ string ConvObj::toString() const {
os << "p=[" << ph << "," << pw << "],"; os << "p=[" << ph << "," << pw << "],";
os << "s=[" << sh << "," << sw << "],"; os << "s=[" << sh << "," << sw << "],";
os << "d=[" << dh << "," << dw << "],"; os << "d=[" << dh << "," << dw << "],";
os << "act=" << enum_to_underlying(act) << ","; // os << "act=" << enum_to_underlying(act) << ",";
os << "input=" << inputs[0]->getGuid() << ","; os << "input=" << inputs[0]->getGuid() << ",";
os << "weight=" << inputs[1]->getGuid() << ","; os << "weight=" << inputs[1]->getGuid() << ",";
os << "output=" << outputs[0]->getGuid() << ")"; os << "output=" << outputs[0]->getGuid() << ")";
return os.str(); return os.str();
} }
vector<int> ConvBaseObj::getWorkloadVector() const {
return {
enum_to_underlying(type), n, c, h, w, f, r, s, ph, pw, sh, sw, dh, dw};
}
vector<int> ConvBaseObj::getOpAttrVector() const {
IT_TODO_HALT(); // should padding mode / ph+pw be in attrs?
return {enum_to_underlying(type), c, f, r, s, ph, pw, sh, sw, dh, dw};
}
void ConvObj::setAuxilaryAttributes(PaddingMode mode) {
const Tensor &input = inputs[0];
const Tensor &weight = inputs[1];
n = input->getDims()[0], c = input->getDims()[1], h = input->getDims()[2],
w = input->getDims()[3], f = weight->getDims()[0], r = weight->getDims()[2],
s = weight->getDims()[3];
if (mode == PaddingMode::Same) {
int oh = h / sh;
int ow = w / sw;
ph = (h - oh * sh + (r - sh) * dh) / 2;
pw = (w - ow * sw + (s - sw) * dw) / 2;
} else if (mode == PaddingMode::Valid) {
ph = pw = 0;
}
}
ConvObj::ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output,
int ph, int pw, int sh, int sw, int dh, int dw, Tensor bias,
ActType act)
: ConvBaseObj(OpType::Conv, {input, weight}, output, ph, pw, sh, sw, dh, dw,
input, weight),
act(act) {
if (bias)
IT_TODO_HALT();
setAuxilaryAttributes(PaddingMode::Other);
IT_ASSERT(checkValid(graph));
}
ConvObj::ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output,
PaddingMode mode, int sh, int sw, int dh, int dw, Tensor bias,
ActType act)
: ConvBaseObj(OpType::Conv, {input, weight}, output, mode, sh, sw, dh, dw,
input, weight),
act(act) {
if (bias)
IT_TODO_HALT();
setAuxilaryAttributes(mode);
IT_ASSERT(checkValid(graph));
}
optional<vector<Shape>> ConvObj::inferShape(const TensorVec &inputs) const { optional<vector<Shape>> ConvObj::inferShape(const TensorVec &inputs) const {
const auto &input = inputs[0], &weight = inputs[1]; const auto &input = inputs[0], &weight = inputs[1];
auto n = input->getDims()[0]; auto n = input->getDims()[0];
@ -70,23 +116,60 @@ optional<vector<Shape>> ConvObj::inferShape(const TensorVec &inputs) const {
return {{{on, oc, oh, ow}}}; return {{{on, oc, oh, ow}}};
} }
vector<int> ConvObj::getWorkloadVector() const { ConvTransposed2dObj::ConvTransposed2dObj(GraphObj *graph, Tensor input,
return { Tensor weight, Tensor output, int ph,
enum_to_underlying(type), n, c, h, w, f, r, s, ph, pw, sh, sw, dh, dw, int pw, int sh, int sw, int dh, int dw,
enum_to_underlying(act)}; int oph, int opw, int group,
Tensor bias, ActType act)
: ConvBaseObj(OpType::ConvTrans, {input, weight}, output, ph, pw, sh, sw,
dh, dw, output, weight),
oph(oph), opw(opw), group(group), act(act) {
if (bias)
IT_TODO_HALT();
setAuxilaryAttributes(PaddingMode::Other);
IT_ASSERT(checkValid(graph));
} }
vector<int> ConvObj::getOpAttrVector() const { ConvTransposed2dObj::ConvTransposed2dObj(GraphObj *graph, Tensor input,
IT_TODO_HALT(); // should padding mode / ph+pw be in attrs? Tensor weight, Tensor output,
return {enum_to_underlying(type), c, f, r, s, ph, pw, sh, sw, dh, dw, PaddingMode mode, int sh, int sw,
enum_to_underlying(act)}; int dh, int dw, int oph, int opw,
int group, Tensor bias, ActType act)
: ConvBaseObj(OpType::ConvTrans, {input, weight}, output, mode, sh, sw, dh,
dw, output, weight),
oph(oph), opw(opw), group(group), act(act) {
if (bias)
IT_TODO_HALT();
setAuxilaryAttributes(mode);
IT_ASSERT(checkValid(graph));
} }
void ConvObj::setAuxilaryAttributes(PaddingMode mode) { optional<vector<Shape>>
n = inputs[0]->getDims()[0], c = inputs[0]->getDims()[1], ConvTransposed2dObj::inferShape(const TensorVec &inputs) const {
h = inputs[0]->getDims()[2], w = inputs[0]->getDims()[3], const Tensor &input = inputs[0], &weight = inputs[1];
f = inputs[1]->getDims()[0], r = inputs[1]->getDims()[2], auto n = input->getDims()[0];
s = inputs[1]->getDims()[3]; auto f = input->getDims()[1];
auto h = input->getDims()[2];
auto w = input->getDims()[3];
auto c = weight->getDims()[1];
auto r = weight->getDims()[2];
auto s = weight->getDims()[3];
if (f != weight->getDims()[0])
return {};
int on = n, oc = c * group;
int oh = 0, ow = 0;
oh = (h - 1) * sh - 2 * ph + dh * (r - 1) + oph + 1;
ow = (w - 1) * sw - 2 * pw + dw * (s - 1) + opw + 1;
return {{{on, oc, oh, ow}}};
}
void ConvTransposed2dObj::setAuxilaryAttributes(PaddingMode mode) {
const Tensor &input = inputs[0];
const Tensor &weight = inputs[1];
n = input->getDims()[0], f = input->getDims()[1], h = input->getDims()[2],
w = input->getDims()[3], c = weight->getDims()[0], r = weight->getDims()[2],
s = weight->getDims()[3];
if (mode == PaddingMode::Same) { if (mode == PaddingMode::Same) {
int oh = h / sh; int oh = h / sh;
int ow = w / sw; int ow = w / sw;

View File

@ -0,0 +1,115 @@
#include "core/graph.h"
#include "core/kernel.h"
#include "core/perf_engine.h"
#include "core/runtime.h"
#include "cuda/cuda_runtime.h"
#include "cuda/cuda_utility.h"
#include "operators/conv.h"
#include "test.h"
namespace infini {
TEST(ConvTransposed, ShapeInference) {
Runtime runtime = CpuRuntimeObj::getInstance();
{ // No pad: InfoGAN ConvTranspose_0
Graph g = make_ref<GraphObj>(runtime);
Tensor i0 = g->addTensor({1, 228, 1, 1});
Tensor w0 = g->addTensor({228, 448, 2, 2});
auto conv = g->addOp<ConvTransposed2dObj>(i0, w0, nullptr, 0, 0);
EXPECT_EQ(conv->getOutput()->getDims(), (Shape{1, 448, 2, 2}));
}
{ // Padded, Strided: InfoGAN ConvTranspose_3
Graph g = make_ref<GraphObj>(runtime);
Tensor i0 = g->addTensor({1, 448, 2, 2});
Tensor w0 = g->addTensor({448, 256, 4, 4});
auto conv = g->addOp<ConvTransposed2dObj>(i0, w0, nullptr, 1, 1, 2, 2);
EXPECT_EQ(conv->getOutput()->getDims(), (Shape{1, 256, 4, 4}));
}
{ // With output padding: GCN ConvTranspose_224
Graph g = make_ref<GraphObj>(runtime);
Tensor i0 = g->addTensor({1, 21, 7, 7});
Tensor w0 = g->addTensor({21, 21, 3, 3});
auto conv = g->addOp<ConvTransposed2dObj>(i0, w0, nullptr, 1, 1, 2, 2,
1, 1, 1, 1);
EXPECT_EQ(conv->getOutput()->getDims(), (Shape{1, 21, 14, 14}));
}
}
void testConvTransposedCudnn(
const std::function<void(void *, size_t, DataType)> &generator,
vector<float> ansVec) {
const auto &[N, C, H, W, F, R, S] = tuple{1, 1, 2, 2, 1, 4, 4};
const int stride = 1, padding = 0, dilation = 1;
// Construct Runtime and graph for CPU and CUDA
Runtime cpu = CpuRuntimeObj::getInstance(); // CPUruntime is singleton
Graph gCpu = make_ref<GraphObj>(cpu);
Runtime cuda = make_ref<CudaRuntimeObj>();
Graph gCuda = make_ref<GraphObj>(cuda);
// Set input data on CPU in a CPU Graph
Tensor i0Cpu = gCpu->addTensor({N, F, H, H}, DataType::Float32);
Tensor w0Cpu = gCpu->addTensor({F, C, R, S}, DataType::Float32);
// Malloc data for all tensors in a graph. Do we need implicit allocation?
gCpu->dataMalloc();
i0Cpu->setData(generator);
w0Cpu->setData(generator);
// Copy input tensors from CPU to CUDA
Tensor i0Cuda = gCuda->cloneTensor(i0Cpu);
Tensor w0Cuda = gCuda->cloneTensor(w0Cpu);
// Build CUDA graph
auto conv = gCuda->addOp<ConvTransposed2dObj>(i0Cuda, w0Cuda, nullptr,
padding, padding, stride,
stride, dilation, dilation);
gCuda->dataMalloc();
// Execute on CUDA
cuda->run(gCuda);
// copy output from CUDA to CPU
auto o0Cpu = gCpu->cloneTensor(conv->getOutput());
// check results on CPU
EXPECT_TRUE(o0Cpu->equalData(ansVec));
}
TEST(ConvTransposed, cuDNN) {
testConvTransposedCudnn(IncrementalGenerator(),
vector<float>{0., 0., 1., 2., 3., 0., 6.,
12., 18., 16., 8., 30., 36., 42.,
32., 16., 54., 60., 66., 48., 24.,
62., 67., 72., 45.});
}
TEST(ConvTransposed, tune) {
Runtime cpu = CpuRuntimeObj::getInstance(); // CPUruntime is singleton
Graph gCpu = make_ref<GraphObj>(cpu);
Runtime cuda = make_ref<CudaRuntimeObj>();
Graph gCuda = make_ref<GraphObj>(cuda);
// Set input data on CPU in a CPU Graph
Tensor i0Cpu = gCpu->addTensor({1, 448, 2, 2}, DataType::Float32);
Tensor w0Cpu = gCpu->addTensor({448, 256, 4, 4}, DataType::Float32);
// Malloc data for all tensors in a graph. Do we need implicit allocation?
gCpu->dataMalloc();
i0Cpu->setData(IncrementalGenerator());
w0Cpu->setData(IncrementalGenerator());
// Copy input tensors from CPU to CUDA
Tensor i0Cuda = gCuda->cloneTensor(i0Cpu);
Tensor w0Cuda = gCuda->cloneTensor(w0Cpu);
// Build CUDA graph
auto conv = gCuda->addOp<ConvTransposed2dObj>(i0Cuda, w0Cuda, nullptr);
// allocate CUDA memory
gCuda->dataMalloc();
// Execute on CUDA
bool tune = true;
cuda->run(gCuda, tune);
// print a tensor/operator/graph by print()
gCuda->print();
// check record
auto kernelAttrs =
KernelAttrs{Device::CUDA, conv->getOpType(), DataType::Float32};
auto perfKey = PerfEngine::Key{kernelAttrs, conv->getOpPerfKey()};
std::optional<PerfRecord> perfData =
PerfEngine::getInstance().getPerfData(perfKey);
ASSERT_TRUE(perfData.has_value());
}
} // namespace infini