forked from jiuyuan/InfiniTensor
Compare commits
2 Commits
master
...
instance_n
Author | SHA1 | Date |
---|---|---|
crapromer | 20f651b1d3 | |
zhangyunze | 3001274969 |
|
@ -85,7 +85,7 @@ class OnnxStub:
|
||||||
while len(sorted_nodes) < len(model.graph.node):
|
while len(sorted_nodes) < len(model.graph.node):
|
||||||
updated = False
|
updated = False
|
||||||
for i, node in enumerate(model.graph.node):
|
for i, node in enumerate(model.graph.node):
|
||||||
if all(t in known_edge for t in node.input):
|
if all(t in known_edge or t == "" for t in node.input):
|
||||||
node.name = str(len(sorted_nodes)) + "_" + node.name
|
node.name = str(len(sorted_nodes)) + "_" + node.name
|
||||||
sorted_nodes.append(i)
|
sorted_nodes.append(i)
|
||||||
known_edge.update(node.output)
|
known_edge.update(node.output)
|
||||||
|
@ -280,6 +280,46 @@ class OnnxStub:
|
||||||
axis,
|
axis,
|
||||||
stash_type,
|
stash_type,
|
||||||
)
|
)
|
||||||
|
elif node.op_type == "InstanceNormalization":
|
||||||
|
shape = tensors[node.input[0]].shape()
|
||||||
|
if len(shape) == 4:
|
||||||
|
(input, scale, bias) = (tensors[node.input[i]] for i in [0, 1, 2])
|
||||||
|
output = tensors.get(node.output[0])
|
||||||
|
attributes = _parse_attribute(
|
||||||
|
node, {"momentum": 1, "training_mode": 0}
|
||||||
|
)
|
||||||
|
(momentum,epsilon,training) = (attributes[name] for name in
|
||||||
|
["momentum", "epsilon", "training_mode"])
|
||||||
|
reshape = "{}-reshape".format(node.output[0])
|
||||||
|
unreshape = "{}-unreshape".format(node.output[0])
|
||||||
|
shape = tensors[node.input[0]].shape()
|
||||||
|
mean = self.handler.tensor(
|
||||||
|
[shape[1]], 1
|
||||||
|
)
|
||||||
|
var = self.handler.tensor(
|
||||||
|
[shape[1]], 1
|
||||||
|
)
|
||||||
|
tensors[reshape] = self.handler.reshape(
|
||||||
|
tensors[node.input[0]],
|
||||||
|
tensors.get(reshape),
|
||||||
|
(1,shape[0]*shape[1],shape[2],shape[3])
|
||||||
|
)
|
||||||
|
tensors[unreshape] = self.handler.batchNormalization(
|
||||||
|
tensors[reshape],
|
||||||
|
tensors.get(unreshape),
|
||||||
|
mean,
|
||||||
|
var,
|
||||||
|
scale,
|
||||||
|
bias,
|
||||||
|
momentum,
|
||||||
|
epsilon,
|
||||||
|
training != 0
|
||||||
|
)
|
||||||
|
tensors[node.output[0]] = self.handler.reshape(
|
||||||
|
tensors[unreshape],
|
||||||
|
tensors.get(node.output[0]),
|
||||||
|
shape
|
||||||
|
)
|
||||||
elif node.op_type == "RMSNorm":
|
elif node.op_type == "RMSNorm":
|
||||||
tensors[node.output[0]] = self.handler.RMSNorm(
|
tensors[node.output[0]] = self.handler.RMSNorm(
|
||||||
tensors[node.input[0]],
|
tensors[node.input[0]],
|
||||||
|
@ -601,15 +641,15 @@ class OnnxStub:
|
||||||
"nearest_mode",
|
"nearest_mode",
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
if len(node.input) > 1:
|
if len(node.input) > 1 and node.input[1] in data:
|
||||||
roiVal = _parse_data(data[node.input[1]])
|
roiVal = _parse_data(data[node.input[1]])
|
||||||
else:
|
else:
|
||||||
roiVal = []
|
roiVal = []
|
||||||
if len(node.input) > 2:
|
if len(node.input) > 2 and node.input[2] in data:
|
||||||
scalesVal = _parse_data(data[node.input[2]])
|
scalesVal = _parse_data(data[node.input[2]])
|
||||||
else:
|
else:
|
||||||
scalesVal = []
|
scalesVal = []
|
||||||
if len(node.input) > 3:
|
if len(node.input) > 3 and node.input[3] in data:
|
||||||
sizesVal = _parse_data(data[node.input[3]])
|
sizesVal = _parse_data(data[node.input[3]])
|
||||||
else:
|
else:
|
||||||
sizesVal = []
|
sizesVal = []
|
||||||
|
@ -617,9 +657,21 @@ class OnnxStub:
|
||||||
tensors[node.input[0]],
|
tensors[node.input[0]],
|
||||||
output,
|
output,
|
||||||
axes,
|
axes,
|
||||||
tensors[node.input[3]] if len(node.input) > 3 else None,
|
(
|
||||||
tensors[node.input[2]] if len(node.input) > 2 else None,
|
tensors[node.input[3]]
|
||||||
tensors[node.input[1]] if len(node.input) > 1 else None,
|
if len(node.input) > 3 and node.input[3] != ""
|
||||||
|
else None
|
||||||
|
),
|
||||||
|
(
|
||||||
|
tensors[node.input[2]]
|
||||||
|
if len(node.input) > 2 and node.input[2] != ""
|
||||||
|
else None
|
||||||
|
),
|
||||||
|
(
|
||||||
|
tensors[node.input[1]]
|
||||||
|
if len(node.input) > 1 and node.input[1] != ""
|
||||||
|
else None
|
||||||
|
),
|
||||||
sizesVal,
|
sizesVal,
|
||||||
scalesVal,
|
scalesVal,
|
||||||
roiVal,
|
roiVal,
|
||||||
|
|
Loading…
Reference in New Issue