forked from jiuyuan/CPM-9G-8B
1067 lines
39 KiB
Python
1067 lines
39 KiB
Python
"""
|
|
*Experimental* implementation of FlashAttention in Triton.
|
|
|
|
We use the FlashAttention implementation from Phil Tillet a starting point.
|
|
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py
|
|
|
|
Changes:
|
|
- Implement both causal and non-causal attention.
|
|
- Implement both self-attention and cross-attention.
|
|
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
|
|
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward.
|
|
- Support attention bias.
|
|
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
|
|
- Make the backward for d=128 much faster by reducing register spilling.
|
|
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
|
|
small batch size * nheads.
|
|
|
|
Caution:
|
|
- This is an *experimental* implementation. The forward pass should be quite robust but
|
|
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler).
|
|
- This implementation has only been tested on A100.
|
|
- If you plan to use headdim other than 64 and 128, you should test for race conditions
|
|
(due to the Triton compiler), as done in tests/test_flash_attn.py
|
|
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions
|
|
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident
|
|
that there are none left for other head dimensions.
|
|
|
|
Differences between this Triton version and the CUDA version:
|
|
- Triton version doesn't support dropout.
|
|
- Triton forward is generally faster than CUDA forward, while Triton backward is
|
|
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower
|
|
than CUDA forward + backward.
|
|
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor).
|
|
- Triton version supports attention bias, while CUDA version doesn't.
|
|
"""
|
|
|
|
import math
|
|
|
|
import torch
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
|
|
# Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128
|
|
# @triton.autotune(
|
|
# configs=[
|
|
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1),
|
|
# # This config has a race condition when EVEN_M == False, disabling it for now.
|
|
# # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
|
|
# ],
|
|
# key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']
|
|
# )
|
|
@triton.heuristics(
|
|
{
|
|
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
|
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
|
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
|
}
|
|
)
|
|
@triton.jit
|
|
def _fwd_kernel(
|
|
Q,
|
|
K,
|
|
V,
|
|
Bias,
|
|
Out,
|
|
Lse,
|
|
TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
|
|
softmax_scale,
|
|
stride_qb,
|
|
stride_qh,
|
|
stride_qm,
|
|
stride_kb,
|
|
stride_kh,
|
|
stride_kn,
|
|
stride_vb,
|
|
stride_vh,
|
|
stride_vn,
|
|
stride_bb,
|
|
stride_bh,
|
|
stride_bm,
|
|
stride_ob,
|
|
stride_oh,
|
|
stride_om,
|
|
nheads,
|
|
seqlen_q,
|
|
seqlen_k,
|
|
seqlen_q_rounded,
|
|
headdim,
|
|
CACHE_KEY_SEQLEN_Q,
|
|
CACHE_KEY_SEQLEN_K,
|
|
BIAS_TYPE: tl.constexpr,
|
|
IS_CAUSAL: tl.constexpr,
|
|
BLOCK_HEADDIM: tl.constexpr,
|
|
EVEN_M: tl.constexpr,
|
|
EVEN_N: tl.constexpr,
|
|
EVEN_HEADDIM: tl.constexpr,
|
|
BLOCK_M: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
):
|
|
start_m = tl.program_id(0)
|
|
off_hb = tl.program_id(1)
|
|
off_b = off_hb // nheads
|
|
off_h = off_hb % nheads
|
|
# off_b = tl.program_id(1)
|
|
# off_h = tl.program_id(2)
|
|
# off_hb = off_b * nheads + off_h
|
|
# initialize offsets
|
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
offs_n = tl.arange(0, BLOCK_N)
|
|
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
|
# Initialize pointers to Q, K, V
|
|
# Adding parenthesis around indexing might use int32 math instead of int64 math?
|
|
# https://github.com/openai/triton/issues/741
|
|
# I'm seeing a tiny bit of difference (5-7us)
|
|
q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
|
|
k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
|
v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
|
if BIAS_TYPE == "vector":
|
|
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n
|
|
elif BIAS_TYPE == "matrix":
|
|
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :])
|
|
# initialize pointer to m and l
|
|
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
|
|
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
|
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
|
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
|
|
# load q: it will stay in SRAM throughout
|
|
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call
|
|
# tl.load(q_ptrs), we get the wrong output!
|
|
if EVEN_M & EVEN_N:
|
|
if EVEN_HEADDIM:
|
|
q = tl.load(q_ptrs)
|
|
else:
|
|
q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
|
else:
|
|
if EVEN_HEADDIM:
|
|
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
|
|
else:
|
|
q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
|
# loop over k, v and update accumulator
|
|
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
|
|
for start_n in range(0, end_n, BLOCK_N):
|
|
start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
# -- compute qk ----
|
|
if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
|
|
if EVEN_HEADDIM:
|
|
k = tl.load(k_ptrs + start_n * stride_kn)
|
|
else:
|
|
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
|
|
else:
|
|
if EVEN_HEADDIM:
|
|
k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
|
else:
|
|
k = tl.load(
|
|
k_ptrs + start_n * stride_kn,
|
|
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
other=0.0,
|
|
)
|
|
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
|
qk += tl.dot(q, k, trans_b=True)
|
|
# Trying to combine the two masks seem to make the result wrong
|
|
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
|
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
|
|
if IS_CAUSAL:
|
|
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
|
|
if BIAS_TYPE != "none":
|
|
if BIAS_TYPE == "vector":
|
|
if EVEN_N:
|
|
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
|
else:
|
|
bias = tl.load(b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0).to(tl.float32)
|
|
bias = bias[None, :]
|
|
elif BIAS_TYPE == "matrix":
|
|
if EVEN_M & EVEN_N:
|
|
bias = tl.load(b_ptrs + start_n).to(tl.float32)
|
|
else:
|
|
bias = tl.load(
|
|
b_ptrs + start_n,
|
|
mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k),
|
|
other=0.0,
|
|
).to(tl.float32)
|
|
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler
|
|
# can then fuse the mult and add into an fma instruction. But if we have bias we need to
|
|
# to multiply with softmax_scale here.
|
|
qk = qk * softmax_scale + bias
|
|
m_ij = tl.maximum(tl.max(qk, 1), lse_i)
|
|
|
|
m_ij = tl.where(m_ij == float("-inf"), 0, m_ij)
|
|
p = tl.exp(qk - m_ij[:, None])
|
|
else:
|
|
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
|
|
p = tl.exp(qk * softmax_scale - m_ij[:, None])
|
|
l_ij = tl.sum(p, 1)
|
|
# p = tl.where(p==float("-inf"), 0, p)
|
|
# l_ij = tl.maximum(tl.sum(p, 1),-1e16)
|
|
# scale acc_o
|
|
acc_o_scale = tl.exp(m_i - m_ij)
|
|
# mask_sum = tl.sum(bias == float("-inf"), axis=1) == BLOCK_M
|
|
# acc_o_scale = tl.where(mask_sum, 0, acc_o_scale)
|
|
# # -- update output accumulator --
|
|
# BUG: have to store and immediately load
|
|
tl.store(t_ptrs, acc_o_scale)
|
|
acc_o_scale = tl.load(t_ptrs)
|
|
acc_o = acc_o * acc_o_scale[:, None]
|
|
# update acc_o
|
|
if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition
|
|
if EVEN_HEADDIM:
|
|
v = tl.load(v_ptrs + start_n * stride_vn)
|
|
else:
|
|
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
|
|
else:
|
|
if EVEN_HEADDIM:
|
|
v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0)
|
|
else:
|
|
v = tl.load(
|
|
v_ptrs + start_n * stride_vn,
|
|
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
|
|
other=0.0,
|
|
)
|
|
p = p.to(v.dtype)
|
|
acc_o += tl.dot(p, v)
|
|
|
|
# -- update statistics
|
|
m_i = m_ij
|
|
l_i_new = tl.exp(lse_i - m_ij) + l_ij
|
|
lse_i = m_ij + tl.log(l_i_new)
|
|
lse_i = tl.where(lse_i == float("-inf"), 0, lse_i)
|
|
o_scale = tl.exp(m_i - lse_i)
|
|
# BUG: have to store and immediately load
|
|
tl.store(t_ptrs, o_scale)
|
|
o_scale = tl.load(t_ptrs)
|
|
acc_o = acc_o * o_scale[:, None]
|
|
# rematerialize offsets to save registers
|
|
start_m = tl.program_id(0)
|
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
# write back l and m
|
|
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
|
|
tl.store(lse_ptrs, lse_i)
|
|
# initialize pointers to output
|
|
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
|
out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :])
|
|
if EVEN_M:
|
|
if EVEN_HEADDIM:
|
|
tl.store(out_ptrs, acc_o)
|
|
else:
|
|
tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
|
|
else:
|
|
if EVEN_HEADDIM:
|
|
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
|
|
else:
|
|
tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
|
|
|
|
|
@triton.jit
|
|
def _bwd_preprocess_do_o_dot(
|
|
Out,
|
|
DO,
|
|
Delta,
|
|
stride_ob,
|
|
stride_oh,
|
|
stride_om,
|
|
stride_dob,
|
|
stride_doh,
|
|
stride_dom,
|
|
nheads,
|
|
seqlen_q,
|
|
seqlen_q_rounded,
|
|
headdim,
|
|
BLOCK_M: tl.constexpr,
|
|
BLOCK_HEADDIM: tl.constexpr,
|
|
):
|
|
start_m = tl.program_id(0)
|
|
off_hb = tl.program_id(1)
|
|
off_b = off_hb // nheads
|
|
off_h = off_hb % nheads
|
|
# initialize offsets
|
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
|
# load
|
|
o = tl.load(
|
|
Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
|
|
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
|
other=0.0,
|
|
).to(tl.float32)
|
|
do = tl.load(
|
|
DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :],
|
|
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
|
other=0.0,
|
|
).to(tl.float32)
|
|
delta = tl.sum(o * do, axis=1)
|
|
# write-back
|
|
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)
|
|
|
|
|
|
@triton.jit
|
|
def _bwd_store_dk_dv(
|
|
dk_ptrs,
|
|
dv_ptrs,
|
|
dk,
|
|
dv,
|
|
offs_n,
|
|
offs_d,
|
|
seqlen_k,
|
|
headdim,
|
|
EVEN_M: tl.constexpr,
|
|
EVEN_N: tl.constexpr,
|
|
EVEN_HEADDIM: tl.constexpr,
|
|
):
|
|
# [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False,
|
|
# if we just call tl.store(dv_ptrs), there's a race condition
|
|
if EVEN_N & EVEN_M:
|
|
if EVEN_HEADDIM:
|
|
tl.store(dv_ptrs, dv)
|
|
tl.store(dk_ptrs, dk)
|
|
else:
|
|
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
|
|
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
|
|
else:
|
|
if EVEN_HEADDIM:
|
|
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
|
|
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
|
|
else:
|
|
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
|
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
|
|
|
|
|
|
@triton.jit
|
|
def _bwd_kernel_one_col_block(
|
|
start_n,
|
|
Q,
|
|
K,
|
|
V,
|
|
Bias,
|
|
DO,
|
|
DQ,
|
|
DK,
|
|
DV,
|
|
LSE,
|
|
D,
|
|
softmax_scale,
|
|
stride_qm,
|
|
stride_kn,
|
|
stride_vn,
|
|
stride_bm,
|
|
stride_dom,
|
|
stride_dqm,
|
|
stride_dkn,
|
|
stride_dvn,
|
|
seqlen_q,
|
|
seqlen_k,
|
|
headdim,
|
|
ATOMIC_ADD: tl.constexpr,
|
|
BIAS_TYPE: tl.constexpr,
|
|
IS_CAUSAL: tl.constexpr,
|
|
BLOCK_HEADDIM: tl.constexpr,
|
|
EVEN_M: tl.constexpr,
|
|
EVEN_N: tl.constexpr,
|
|
EVEN_HEADDIM: tl.constexpr,
|
|
BLOCK_M: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
):
|
|
# We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
|
|
begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
|
|
# initialize row/col offsets
|
|
offs_qm = begin_m + tl.arange(0, BLOCK_M)
|
|
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
|
offs_m = tl.arange(0, BLOCK_M)
|
|
offs_d = tl.arange(0, BLOCK_HEADDIM)
|
|
# initialize pointers to value-like data
|
|
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
|
|
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
|
|
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
|
|
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
|
|
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
|
|
if BIAS_TYPE == "vector":
|
|
b_ptrs = Bias + offs_n
|
|
elif BIAS_TYPE == "matrix":
|
|
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :])
|
|
# initialize dv and dk
|
|
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
|
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
|
|
# There seems to be some problem with Triton pipelining that makes results wrong for
|
|
# headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop
|
|
# may have zero step, and pipelining with the bias matrix could screw it up.
|
|
# So we just exit early.
|
|
if begin_m >= seqlen_q:
|
|
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
|
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
|
_bwd_store_dk_dv(
|
|
dk_ptrs,
|
|
dv_ptrs,
|
|
dk,
|
|
dv,
|
|
offs_n,
|
|
offs_d,
|
|
seqlen_k,
|
|
headdim,
|
|
EVEN_M=EVEN_M,
|
|
EVEN_N=EVEN_N,
|
|
EVEN_HEADDIM=EVEN_HEADDIM,
|
|
)
|
|
return
|
|
# k and v stay in SRAM throughout
|
|
# [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
|
|
# if we just call tl.load(k_ptrs), we get the wrong output!
|
|
if EVEN_N & EVEN_M:
|
|
if EVEN_HEADDIM:
|
|
k = tl.load(k_ptrs)
|
|
v = tl.load(v_ptrs)
|
|
else:
|
|
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
|
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
|
else:
|
|
if EVEN_HEADDIM:
|
|
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
|
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
|
|
else:
|
|
k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
|
v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0)
|
|
# loop over rows
|
|
num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
|
|
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
|
|
start_m = tl.multiple_of(start_m, BLOCK_M)
|
|
offs_m_curr = start_m + offs_m
|
|
# load q, k, v, do on-chip
|
|
# Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117)
|
|
if EVEN_M & EVEN_HEADDIM:
|
|
q = tl.load(q_ptrs)
|
|
else:
|
|
if EVEN_HEADDIM:
|
|
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
|
else:
|
|
q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
|
# recompute p = softmax(qk, dim=-1).T
|
|
qk = tl.dot(q, k, trans_b=True)
|
|
# Trying to combine the two masks seem to make the result wrong
|
|
if not EVEN_N: # Need to mask out otherwise the softmax is wrong
|
|
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
|
|
if IS_CAUSAL:
|
|
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
|
|
if BIAS_TYPE != "none":
|
|
tl.debug_barrier() # Race condition otherwise
|
|
if BIAS_TYPE == "vector":
|
|
if EVEN_N:
|
|
bias = tl.load(b_ptrs).to(tl.float32)
|
|
else:
|
|
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32)
|
|
bias = bias[None, :]
|
|
elif BIAS_TYPE == "matrix":
|
|
if EVEN_M & EVEN_N:
|
|
bias = tl.load(b_ptrs).to(tl.float32)
|
|
else:
|
|
bias = tl.load(
|
|
b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0
|
|
).to(tl.float32)
|
|
qk = qk * softmax_scale + bias
|
|
# There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
|
|
# Also wrong for headdim=64.
|
|
if not (EVEN_M & EVEN_HEADDIM):
|
|
tl.debug_barrier()
|
|
lse_i = tl.load(LSE + offs_m_curr)
|
|
if BIAS_TYPE == "none":
|
|
p = tl.exp(qk * softmax_scale - lse_i[:, None])
|
|
else:
|
|
p = tl.exp(qk - lse_i[:, None])
|
|
# compute dv
|
|
# [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call
|
|
# do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs
|
|
# in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512,
|
|
# the output is correct.
|
|
if EVEN_M & EVEN_HEADDIM:
|
|
do = tl.load(do_ptrs)
|
|
else:
|
|
# [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask.
|
|
do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0)
|
|
# if EVEN_M:
|
|
# if EVEN_HEADDIM:
|
|
# do = tl.load(do_ptrs)
|
|
# else:
|
|
# do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
|
|
# else:
|
|
# if EVEN_HEADDIM:
|
|
# do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
|
|
# else:
|
|
# do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
|
|
# & (offs_d[None, :] < headdim), other=0.0)
|
|
dv += tl.dot(p.to(do.dtype), do, trans_a=True)
|
|
# compute dp = dot(v, do)
|
|
# There seems to be a race condition when headdim=48/96, and dq, dk are wrong.
|
|
# Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True
|
|
# Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False
|
|
if not (EVEN_M & EVEN_HEADDIM):
|
|
tl.debug_barrier()
|
|
dp = tl.dot(do, v, trans_b=True)
|
|
# There's a race condition for headdim=48
|
|
if not EVEN_HEADDIM:
|
|
tl.debug_barrier()
|
|
# compute ds = p * (dp - delta[:, None])
|
|
# Putting the subtraction after the dp matmul (instead of before) is slightly faster
|
|
Di = tl.load(D + offs_m_curr)
|
|
# Converting ds to q.dtype here reduces register pressure and makes it much faster
|
|
# for BLOCK_HEADDIM=128
|
|
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
|
|
# compute dk = dot(ds.T, q)
|
|
dk += tl.dot(ds, q, trans_a=True)
|
|
# compute dq
|
|
if not (EVEN_M & EVEN_HEADDIM): # Otherewise there's a race condition when BIAS_TYPE='matrix'
|
|
tl.debug_barrier()
|
|
if not ATOMIC_ADD:
|
|
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
|
dq = tl.load(dq_ptrs, eviction_policy="evict_last")
|
|
dq += tl.dot(ds, k)
|
|
tl.store(dq_ptrs, dq, eviction_policy="evict_last")
|
|
else:
|
|
if EVEN_HEADDIM:
|
|
dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy="evict_last")
|
|
dq += tl.dot(ds, k)
|
|
tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy="evict_last")
|
|
else:
|
|
dq = tl.load(
|
|
dq_ptrs,
|
|
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
|
other=0.0,
|
|
eviction_policy="evict_last",
|
|
)
|
|
dq += tl.dot(ds, k)
|
|
tl.store(
|
|
dq_ptrs,
|
|
dq,
|
|
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
|
|
eviction_policy="evict_last",
|
|
)
|
|
else: # If we're parallelizing across the seqlen_k dimension
|
|
dq = tl.dot(ds, k)
|
|
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M
|
|
tl.atomic_add(dq_ptrs, dq)
|
|
else:
|
|
if EVEN_HEADDIM:
|
|
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
|
|
else:
|
|
tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
|
|
# increment pointers
|
|
dq_ptrs += BLOCK_M * stride_dqm
|
|
q_ptrs += BLOCK_M * stride_qm
|
|
do_ptrs += BLOCK_M * stride_dom
|
|
if BIAS_TYPE == "matrix":
|
|
b_ptrs += BLOCK_M * stride_bm
|
|
# write-back
|
|
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
|
|
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
|
|
_bwd_store_dk_dv(
|
|
dk_ptrs,
|
|
dv_ptrs,
|
|
dk,
|
|
dv,
|
|
offs_n,
|
|
offs_d,
|
|
seqlen_k,
|
|
headdim,
|
|
EVEN_M=EVEN_M,
|
|
EVEN_N=EVEN_N,
|
|
EVEN_HEADDIM=EVEN_HEADDIM,
|
|
)
|
|
|
|
|
|
def init_to_zero(name):
|
|
return lambda nargs: nargs[name].zero_()
|
|
|
|
|
|
@triton.autotune(
|
|
configs=[
|
|
triton.Config(
|
|
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False},
|
|
num_warps=8,
|
|
num_stages=1,
|
|
pre_hook=init_to_zero("DQ"),
|
|
),
|
|
triton.Config(
|
|
{"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True},
|
|
num_warps=8,
|
|
num_stages=1,
|
|
pre_hook=init_to_zero("DQ"),
|
|
),
|
|
# Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
|
|
# # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
|
|
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
|
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
|
|
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
|
# triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
|
|
],
|
|
key=["CACHE_KEY_SEQLEN_Q", "CACHE_KEY_SEQLEN_K", "BIAS_TYPE", "IS_CAUSAL", "BLOCK_HEADDIM"],
|
|
)
|
|
@triton.heuristics(
|
|
{
|
|
"EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
|
|
"EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
|
|
"EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
|
|
}
|
|
)
|
|
@triton.jit
|
|
def _bwd_kernel(
|
|
Q,
|
|
K,
|
|
V,
|
|
Bias,
|
|
DO,
|
|
DQ,
|
|
DK,
|
|
DV,
|
|
LSE,
|
|
D,
|
|
softmax_scale,
|
|
stride_qb,
|
|
stride_qh,
|
|
stride_qm,
|
|
stride_kb,
|
|
stride_kh,
|
|
stride_kn,
|
|
stride_vb,
|
|
stride_vh,
|
|
stride_vn,
|
|
stride_bb,
|
|
stride_bh,
|
|
stride_bm,
|
|
stride_dob,
|
|
stride_doh,
|
|
stride_dom,
|
|
stride_dqb,
|
|
stride_dqh,
|
|
stride_dqm,
|
|
stride_dkb,
|
|
stride_dkh,
|
|
stride_dkn,
|
|
stride_dvb,
|
|
stride_dvh,
|
|
stride_dvn,
|
|
nheads,
|
|
seqlen_q,
|
|
seqlen_k,
|
|
seqlen_q_rounded,
|
|
headdim,
|
|
CACHE_KEY_SEQLEN_Q,
|
|
CACHE_KEY_SEQLEN_K,
|
|
BIAS_TYPE: tl.constexpr,
|
|
IS_CAUSAL: tl.constexpr,
|
|
BLOCK_HEADDIM: tl.constexpr,
|
|
SEQUENCE_PARALLEL: tl.constexpr,
|
|
EVEN_M: tl.constexpr,
|
|
EVEN_N: tl.constexpr,
|
|
EVEN_HEADDIM: tl.constexpr,
|
|
BLOCK_M: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
):
|
|
off_hb = tl.program_id(1)
|
|
off_b = off_hb // nheads
|
|
off_h = off_hb % nheads
|
|
# offset pointers for batch/head
|
|
Q += off_b * stride_qb + off_h * stride_qh
|
|
K += off_b * stride_kb + off_h * stride_kh
|
|
V += off_b * stride_vb + off_h * stride_vh
|
|
DO += off_b * stride_dob + off_h * stride_doh
|
|
DQ += off_b * stride_dqb + off_h * stride_dqh
|
|
DK += off_b * stride_dkb + off_h * stride_dkh
|
|
DV += off_b * stride_dvb + off_h * stride_dvh
|
|
if BIAS_TYPE != "none":
|
|
Bias += off_b * stride_bb + off_h * stride_bh
|
|
# pointer to row-wise quantities in value-like data
|
|
D += off_hb * seqlen_q_rounded
|
|
LSE += off_hb * seqlen_q_rounded
|
|
if not SEQUENCE_PARALLEL:
|
|
num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
|
|
for start_n in range(0, num_block_n):
|
|
_bwd_kernel_one_col_block(
|
|
start_n,
|
|
Q,
|
|
K,
|
|
V,
|
|
Bias,
|
|
DO,
|
|
DQ,
|
|
DK,
|
|
DV,
|
|
LSE,
|
|
D,
|
|
softmax_scale,
|
|
stride_qm,
|
|
stride_kn,
|
|
stride_vn,
|
|
stride_bm,
|
|
stride_dom,
|
|
stride_dqm,
|
|
stride_dkn,
|
|
stride_dvn,
|
|
seqlen_q,
|
|
seqlen_k,
|
|
headdim,
|
|
ATOMIC_ADD=False,
|
|
BIAS_TYPE=BIAS_TYPE,
|
|
IS_CAUSAL=IS_CAUSAL,
|
|
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
|
EVEN_M=EVEN_M,
|
|
EVEN_N=EVEN_N,
|
|
EVEN_HEADDIM=EVEN_HEADDIM,
|
|
BLOCK_M=BLOCK_M,
|
|
BLOCK_N=BLOCK_N,
|
|
)
|
|
else:
|
|
start_n = tl.program_id(0)
|
|
_bwd_kernel_one_col_block(
|
|
start_n,
|
|
Q,
|
|
K,
|
|
V,
|
|
Bias,
|
|
DO,
|
|
DQ,
|
|
DK,
|
|
DV,
|
|
LSE,
|
|
D,
|
|
softmax_scale,
|
|
stride_qm,
|
|
stride_kn,
|
|
stride_vn,
|
|
stride_bm,
|
|
stride_dom,
|
|
stride_dqm,
|
|
stride_dkn,
|
|
stride_dvn,
|
|
seqlen_q,
|
|
seqlen_k,
|
|
headdim,
|
|
ATOMIC_ADD=True,
|
|
BIAS_TYPE=BIAS_TYPE,
|
|
IS_CAUSAL=IS_CAUSAL,
|
|
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
|
EVEN_M=EVEN_M,
|
|
EVEN_N=EVEN_N,
|
|
EVEN_HEADDIM=EVEN_HEADDIM,
|
|
BLOCK_M=BLOCK_M,
|
|
BLOCK_N=BLOCK_N,
|
|
)
|
|
|
|
|
|
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
# shape constraints
|
|
batch, seqlen_q, nheads, d = q.shape
|
|
_, seqlen_k, _, _ = k.shape
|
|
assert k.shape == (batch, seqlen_k, nheads, d)
|
|
assert v.shape == (batch, seqlen_k, nheads, d)
|
|
assert d <= 128, "FlashAttention only support head dimensions up to 128"
|
|
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type"
|
|
assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16"
|
|
assert q.is_cuda and k.is_cuda and v.is_cuda
|
|
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
|
|
|
has_bias = bias is not None
|
|
bias_type = "none"
|
|
if has_bias:
|
|
assert bias.dtype in [q.dtype, torch.float]
|
|
assert bias.is_cuda
|
|
assert bias.dim() == 4
|
|
if bias.stride(-1) != 1:
|
|
bias = bias.contiguous()
|
|
if bias.shape[2:] == (1, seqlen_k):
|
|
bias_type = "vector"
|
|
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
|
bias_type = "matrix"
|
|
else:
|
|
raise RuntimeError("Last 2 dimensions of bias must be (1, seqlen_k)" " or (seqlen_q, seqlen_k)")
|
|
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
|
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
|
|
|
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
|
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
|
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
|
|
o = torch.empty_like(q)
|
|
|
|
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
|
BLOCK = 128
|
|
num_warps = 4 if d <= 64 else 8
|
|
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
|
_fwd_kernel[grid](
|
|
q,
|
|
k,
|
|
v,
|
|
bias,
|
|
o,
|
|
lse,
|
|
tmp,
|
|
softmax_scale,
|
|
q.stride(0),
|
|
q.stride(2),
|
|
q.stride(1),
|
|
k.stride(0),
|
|
k.stride(2),
|
|
k.stride(1),
|
|
v.stride(0),
|
|
v.stride(2),
|
|
v.stride(1),
|
|
*bias_strides,
|
|
o.stride(0),
|
|
o.stride(2),
|
|
o.stride(1),
|
|
nheads,
|
|
seqlen_q,
|
|
seqlen_k,
|
|
seqlen_q_rounded,
|
|
d,
|
|
seqlen_q // 32,
|
|
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
|
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
|
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
|
bias_type,
|
|
causal,
|
|
BLOCK_HEADDIM,
|
|
BLOCK_M=BLOCK,
|
|
BLOCK_N=BLOCK,
|
|
num_warps=num_warps,
|
|
num_stages=1,
|
|
)
|
|
return o, lse, softmax_scale # softmax_scale could have been updated
|
|
|
|
|
|
def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None):
|
|
# Make sure that the last dimension is contiguous
|
|
if do.stride(-1) != 1:
|
|
do = do.contiguous()
|
|
batch, seqlen_q, nheads, d = q.shape
|
|
_, seqlen_k, _, _ = k.shape
|
|
# assert d in {16, 32, 64, 128}
|
|
assert d <= 128
|
|
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
|
|
assert lse.shape == (batch, nheads, seqlen_q_rounded)
|
|
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1
|
|
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1
|
|
softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
|
|
# dq_accum = torch.zeros_like(q, dtype=torch.float32)
|
|
dq_accum = torch.empty_like(q, dtype=torch.float32)
|
|
delta = torch.empty_like(lse)
|
|
# delta = torch.zeros_like(lse)
|
|
|
|
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
|
|
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
|
|
_bwd_preprocess_do_o_dot[grid](
|
|
o,
|
|
do,
|
|
delta,
|
|
o.stride(0),
|
|
o.stride(2),
|
|
o.stride(1),
|
|
do.stride(0),
|
|
do.stride(2),
|
|
do.stride(1),
|
|
nheads,
|
|
seqlen_q,
|
|
seqlen_q_rounded,
|
|
d,
|
|
BLOCK_M=128,
|
|
BLOCK_HEADDIM=BLOCK_HEADDIM,
|
|
)
|
|
|
|
has_bias = bias is not None
|
|
bias_type = "none"
|
|
if has_bias:
|
|
assert bias.dtype in [q.dtype, torch.float]
|
|
assert bias.is_cuda
|
|
assert bias.dim() == 4
|
|
assert bias.stride(-1) == 1
|
|
if bias.shape[2:] == (1, seqlen_k):
|
|
bias_type = "vector"
|
|
elif bias.shape[2:] == (seqlen_q, seqlen_k):
|
|
bias_type = "matrix"
|
|
else:
|
|
raise RuntimeError("Last 2 dimensions of bias must be (1, seqlen_k)" " or (seqlen_q, seqlen_k)")
|
|
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k)
|
|
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0)
|
|
|
|
# BLOCK_M = 128
|
|
# BLOCK_N = 64
|
|
# num_warps = 4
|
|
grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1, batch * nheads)
|
|
_bwd_kernel[grid](
|
|
q,
|
|
k,
|
|
v,
|
|
bias,
|
|
do,
|
|
dq_accum,
|
|
dk,
|
|
dv,
|
|
lse,
|
|
delta,
|
|
softmax_scale,
|
|
q.stride(0),
|
|
q.stride(2),
|
|
q.stride(1),
|
|
k.stride(0),
|
|
k.stride(2),
|
|
k.stride(1),
|
|
v.stride(0),
|
|
v.stride(2),
|
|
v.stride(1),
|
|
*bias_strides,
|
|
do.stride(0),
|
|
do.stride(2),
|
|
do.stride(1),
|
|
dq_accum.stride(0),
|
|
dq_accum.stride(2),
|
|
dq_accum.stride(1),
|
|
dk.stride(0),
|
|
dk.stride(2),
|
|
dk.stride(1),
|
|
dv.stride(0),
|
|
dv.stride(2),
|
|
dv.stride(1),
|
|
nheads,
|
|
seqlen_q,
|
|
seqlen_k,
|
|
seqlen_q_rounded,
|
|
d,
|
|
seqlen_q // 32,
|
|
seqlen_k // 32, # key for triton cache (limit number of compilations)
|
|
# Can't use kwargs here because triton autotune expects key to be args, not kwargs
|
|
# IS_CAUSAL=causal, BLOCK_HEADDIM=d,
|
|
bias_type,
|
|
causal,
|
|
BLOCK_HEADDIM,
|
|
# SEQUENCE_PARALLEL=False,
|
|
# BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
|
|
# num_warps=num_warps,
|
|
# num_stages=1,
|
|
)
|
|
dq.copy_(dq_accum)
|
|
|
|
|
|
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None):
|
|
"""
|
|
qkv: (batch, seqlen, 3, nheads, headdim)
|
|
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen).
|
|
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen).
|
|
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen)
|
|
"""
|
|
# Make sure that the last dimension is contiguous
|
|
if qkv.stride(-1) != 1:
|
|
qkv = qkv.contiguous()
|
|
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
|
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale
|
|
)
|
|
ctx.save_for_backward(qkv, o, lse, bias)
|
|
ctx.causal = causal
|
|
return o
|
|
|
|
@staticmethod
|
|
def backward(ctx, do):
|
|
qkv, o, lse, bias = ctx.saved_tensors
|
|
assert not ctx.needs_input_grad[1], "FlashAttention does not support bias gradient yet"
|
|
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
|
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
|
with torch.inference_mode():
|
|
dqkv = torch.empty_like(qkv)
|
|
_flash_attn_backward(
|
|
do,
|
|
qkv[:, :, 0],
|
|
qkv[:, :, 1],
|
|
qkv[:, :, 2],
|
|
o,
|
|
lse,
|
|
dqkv[:, :, 0],
|
|
dqkv[:, :, 1],
|
|
dqkv[:, :, 2],
|
|
bias=bias,
|
|
causal=ctx.causal,
|
|
softmax_scale=ctx.softmax_scale,
|
|
)
|
|
return dqkv, None, None, None
|
|
|
|
|
|
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply
|
|
|
|
|
|
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None):
|
|
"""
|
|
q: (batch, seqlen_q, nheads, headdim)
|
|
kv: (batch, seqlen_k, 2, nheads, headdim)
|
|
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
|
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
|
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
|
"""
|
|
# Make sure that the last dimension is contiguous
|
|
q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
|
|
o, lse, ctx.softmax_scale = _flash_attn_forward(
|
|
q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale
|
|
)
|
|
ctx.save_for_backward(q, kv, o, lse, bias)
|
|
ctx.causal = causal
|
|
return o
|
|
|
|
@staticmethod
|
|
def backward(ctx, do):
|
|
q, kv, o, lse, bias = ctx.saved_tensors
|
|
assert not ctx.needs_input_grad[2], "FlashAttention does not support bias gradient yet"
|
|
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
|
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
|
with torch.inference_mode():
|
|
dq = torch.empty_like(q)
|
|
dkv = torch.empty_like(kv)
|
|
_flash_attn_backward(
|
|
do,
|
|
q,
|
|
kv[:, :, 0],
|
|
kv[:, :, 1],
|
|
o,
|
|
lse,
|
|
dq,
|
|
dkv[:, :, 0],
|
|
dkv[:, :, 1],
|
|
bias=bias,
|
|
causal=ctx.causal,
|
|
softmax_scale=ctx.softmax_scale,
|
|
)
|
|
return dq, dkv, None, None, None
|
|
|
|
|
|
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply
|
|
|
|
|
|
class FlashAttnFunc(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None):
|
|
"""
|
|
q: (batch_size, seqlen_q, nheads, headdim)
|
|
k, v: (batch_size, seqlen_k, nheads, headdim)
|
|
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k).
|
|
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k).
|
|
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k)
|
|
"""
|
|
# Make sure that the last dimension is contiguous
|
|
q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
|
|
o, lse, ctx.softmax_scale = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale)
|
|
ctx.save_for_backward(q, k, v, o, lse, bias)
|
|
ctx.causal = causal
|
|
return o
|
|
|
|
@staticmethod
|
|
def backward(ctx, do):
|
|
q, k, v, o, lse, bias = ctx.saved_tensors
|
|
assert not ctx.needs_input_grad[3], "FlashAttention does not support bias gradient yet"
|
|
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd
|
|
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version.
|
|
with torch.inference_mode():
|
|
dq = torch.empty_like(q)
|
|
dk = torch.empty_like(k)
|
|
dv = torch.empty_like(v)
|
|
_flash_attn_backward(
|
|
do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale
|
|
)
|
|
return dq, dk, dv, None, None, None
|
|
|
|
|
|
flash_attn_func = FlashAttnFunc.apply
|