import torch import struct import numpy as np def write_string(fp, v): v = v.encode("utf-8") fp.write( struct.pack("I", len(v)) ) fp.write(v) def write_tuple(fp, v): fp.write( struct.pack("B", len(v)) ) for i in v: fp.write( struct.pack("I", i) ) def write_dtype(fp, v): sv = -1 if v == np.int8: sv = 0 elif v == np.float16: sv = 1 if sv == -1: raise TypeError("Unknown dtype %s" % v) fp.write( struct.pack("B", sv) ) def write_parameter(fp, name : str, value : torch.Tensor): write_string(fp, name) write_tuple(fp, value.size()) value = np.ascontiguousarray(value.cpu().numpy()) value_bytes = value.tobytes() fp.write( struct.pack("I", len(value_bytes)) ) write_dtype(fp, value.dtype) fp.write(value_bytes) def split(x, s): sizes = [] for it in x.size(): sizes.append(it) assert sizes[0] % s == 0 sizes = [s, sizes[0] // s ] + sizes[1:] return x.reshape(*sizes) def main(src_model_path, dst_model_path, layer_num): #训练保存的原始模型 model = torch.load(src_model_path, map_location="cpu") params = {} params["input_embedding.weight"] = model["input_embedding.weight"].cpu() params["lm_head.weight"] = model["lm_head.weight"].cpu() params["output_layernorm.weight"] = (model["encoder.output_layernorm.weight"]).cpu() for i in range(layer_num): params[f"layers.{i}.ln_attn.weight"] = model[f"encoder.layers.{i}.self_att.layernorm_before_attention.weight"].cpu() params[f"layers.{i}.attn.project_q.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_q.weight"] params[f"layers.{i}.attn.project_k.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_k.weight"] params[f"layers.{i}.attn.project_v.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_v.weight"] params[f"layers.{i}.attn.attn_out.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.attention_out.weight"] params[f"layers.{i}.ln_ff.weight"] = model[f"encoder.layers.{i}.ffn.layernorm_before_ffn.weight"].cpu() params[f"layers.{i}.ff.w_in.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_in.w_0.weight"] params[f"layers.{i}.ff.w_gated.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_in.w_1.weight"] params[f"layers.{i}.ff.w_out.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_out.weight"] #转换后的模型 fout = open(dst_model_path, "wb") fout.write( struct.pack("I", len(params)) ) for name, value in params.items(): write_parameter(fout, name, value) fout.close() if __name__ == '__main__': src_model_path = "/home/wangyixuan/workplace/llm_service/sse/checkpoints-epoch-2/cpm9g-8b-sft-epoch-2.pt" dst_model_path = "model_8b.ckpt" # 百亿:32 # 千亿:80 layer_num = 32 main(src_model_path, dst_model_path, layer_num)