2023-06-16 20:01:16 +08:00
|
|
|
import json
|
2024-04-20 01:31:38 +08:00
|
|
|
import os
|
|
|
|
|
2023-06-16 20:01:16 +08:00
|
|
|
import datasets
|
|
|
|
|
2024-03-20 20:09:06 +08:00
|
|
|
|
2024-03-20 16:31:30 +08:00
|
|
|
_HF_ENDPOINT = os.getenv("HF_ENDPOINT", "https://huggingface.co")
|
2023-06-16 20:01:16 +08:00
|
|
|
|
|
|
|
_DESCRIPTION = "BELLE multiturn chat dataset."
|
|
|
|
|
|
|
|
_CITATION = """\
|
|
|
|
@article{belle2023exploring,
|
|
|
|
title={Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases},
|
|
|
|
author={Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Lei Zhang, Baochang Ma, Xiangang Li},
|
|
|
|
journal={arXiv preprint arXiv:2303.14742},
|
|
|
|
year={2023}
|
|
|
|
}
|
|
|
|
"""
|
|
|
|
|
2024-03-20 20:09:06 +08:00
|
|
|
_HOMEPAGE = "{}/datasets/BelleGroup/multiturn_chat_0.8M".format(_HF_ENDPOINT)
|
2023-06-16 20:01:16 +08:00
|
|
|
_LICENSE = "gpl-3.0"
|
2024-03-20 20:09:06 +08:00
|
|
|
_URL = "{}/datasets/BelleGroup/multiturn_chat_0.8M/resolve/main/multiturn_chat_0.8M.json".format(_HF_ENDPOINT)
|
2023-06-16 20:01:16 +08:00
|
|
|
|
|
|
|
|
|
|
|
class BelleMultiturn(datasets.GeneratorBasedBuilder):
|
|
|
|
VERSION = datasets.Version("0.0.0")
|
|
|
|
|
2023-11-09 15:53:23 +08:00
|
|
|
def _info(self):
|
2024-04-20 01:31:38 +08:00
|
|
|
features = datasets.Features(
|
|
|
|
{"conversations": [{"from": datasets.Value("string"), "value": datasets.Value("string")}]}
|
|
|
|
)
|
2023-06-16 20:01:16 +08:00
|
|
|
return datasets.DatasetInfo(
|
2024-04-20 01:31:38 +08:00
|
|
|
description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION
|
2023-06-16 20:01:16 +08:00
|
|
|
)
|
|
|
|
|
2023-11-09 15:53:23 +08:00
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
2023-06-16 20:01:16 +08:00
|
|
|
file_path = dl_manager.download(_URL)
|
2024-04-20 01:31:38 +08:00
|
|
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file_path})]
|
2023-06-16 20:01:16 +08:00
|
|
|
|
2023-11-09 15:53:23 +08:00
|
|
|
def _generate_examples(self, filepath: str):
|
2023-06-16 20:01:16 +08:00
|
|
|
with open(filepath, "r", encoding="utf-8") as f:
|
|
|
|
for key, row in enumerate(f):
|
|
|
|
data = json.loads(row)
|
2023-11-16 02:08:04 +08:00
|
|
|
conversations = []
|
2023-06-16 20:01:16 +08:00
|
|
|
prompt = data["instruction"].strip()
|
|
|
|
response = data["output"].strip()
|
|
|
|
|
|
|
|
assist_idx = prompt.rfind("Assistant:")
|
|
|
|
human_idx = prompt.rfind("Human:")
|
2024-04-20 01:31:38 +08:00
|
|
|
query = prompt[human_idx + 6 : assist_idx].strip()
|
2023-06-16 20:01:16 +08:00
|
|
|
prompt = prompt[:human_idx].strip()
|
2023-11-16 02:08:04 +08:00
|
|
|
conversations.insert(0, {"from": "gpt", "value": response})
|
|
|
|
conversations.insert(0, {"from": "human", "value": query})
|
2023-06-16 20:01:16 +08:00
|
|
|
|
|
|
|
while prompt.rfind("Assistant:") != -1:
|
|
|
|
assist_idx = prompt.rfind("Assistant:")
|
|
|
|
human_idx = prompt.rfind("Human:")
|
|
|
|
if human_idx != -1:
|
2024-04-20 01:31:38 +08:00
|
|
|
old_query = prompt[human_idx + 6 : assist_idx].strip()
|
|
|
|
old_resp = prompt[assist_idx + 10 :].strip()
|
2023-11-16 02:08:04 +08:00
|
|
|
conversations.insert(0, {"from": "gpt", "value": old_resp})
|
|
|
|
conversations.insert(0, {"from": "human", "value": old_query})
|
2023-06-16 20:01:16 +08:00
|
|
|
else:
|
|
|
|
break
|
|
|
|
prompt = prompt[:human_idx].strip()
|
|
|
|
|
2023-11-16 02:08:04 +08:00
|
|
|
yield key, {"conversations": conversations}
|