LLaMA-Factory-Mirror/README_zh.md

504 lines
21 KiB
Markdown
Raw Normal View History

2023-10-12 21:42:29 +08:00
# LLaMA Factory: 轻松的大模型训练与评估
2023-10-12 21:42:29 +08:00
[![GitHub Repo stars](https://img.shields.io/github/stars/hiyouga/LLaMA-Factory?style=social)](https://github.com/hiyouga/LLaMA-Factory/stargazers)
[![GitHub Code License](https://img.shields.io/github/license/hiyouga/LLaMA-Factory)](LICENSE)
[![GitHub last commit](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Factory)](https://github.com/hiyouga/LLaMA-Factory/commits/main)
[![PyPI](https://img.shields.io/pypi/v/llmtuner)](https://pypi.org/project/llmtuner/)
2023-09-16 17:33:01 +08:00
[![Downloads](https://static.pepy.tech/badge/llmtuner)](https://pypi.org/project/llmtuner/)
2023-10-12 21:42:29 +08:00
[![GitHub pull request](https://img.shields.io/badge/PRs-welcome-blue)](https://github.com/hiyouga/LLaMA-Factory/pulls)
2023-11-13 23:22:56 +08:00
[![Discord](https://dcbadge.vercel.app/api/server/c2EPEt5NU?compact=true&style=flat)](https://discord.gg/c2EPEt5NU)
2023-07-22 14:31:16 +08:00
👋 加入我们的[微信群](assets/wechat.jpg)。
\[ [English](README.md) | 中文 \]
2023-10-16 00:28:27 +08:00
## LLaMA Board: 通过一站式网页界面快速上手 LLaMA Factory
2023-10-15 20:28:14 +08:00
2023-11-15 23:51:26 +08:00
通过 **[Hugging Face Space](https://huggingface.co/spaces/hiyouga/LLaMA-Board)** 预览 LLaMA Board。
使用 `CUDA_VISIBLE_DEVICES=0 python src/train_web.py` 启动 LLaMA Board。该界面目前仅支持单卡训练
2023-10-16 00:28:27 +08:00
下面是使用单张 GPU 在 10 分钟内更改对话式大型语言模型自我认知的示例。
2023-10-15 20:28:14 +08:00
https://github.com/hiyouga/LLaMA-Factory/assets/16256802/6ba60acc-e2e2-4bec-b846-2d88920d5ba1
## 更新日志
2023-10-22 16:15:08 +08:00
[23/10/21] 我们支持了 **[NEFTune](https://arxiv.org/abs/2310.05914)** 训练技巧。请使用 `--neft_alpha` 参数启用 NEFTune例如 `--neft_alpha 5`
2023-10-21 14:24:10 +08:00
2023-09-28 14:39:16 +08:00
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
2023-09-27 21:55:50 +08:00
2023-09-23 21:10:17 +08:00
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
2023-09-10 20:43:56 +08:00
2023-10-13 13:53:43 +08:00
[23/09/10] 我们针对 LLaMA 模型支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2。
2023-08-12 21:00:11 +08:00
2023-09-23 00:34:17 +08:00
[23/08/12] 我们支持了 **RoPE 插值**来扩展 LLaMA 模型的上下文长度。请使用 `--rope_scaling linear` 参数训练模型或使用 `--rope_scaling dynamic` 参数评估模型。
2023-08-11 03:02:53 +08:00
2023-09-23 00:34:17 +08:00
[23/08/11] 我们支持了指令模型的 **[DPO 训练](https://arxiv.org/abs/2305.18290)**。使用方法请参阅[此示例](#dpo-训练)。
[23/07/31] 我们支持了**数据流式加载**。请尝试使用 `--streaming``--max_steps 10000` 参数来流式加载数据集。
2023-07-31 23:42:32 +08:00
2023-09-09 13:50:29 +08:00
[23/07/29] 我们在 Hugging Face 发布了两个 13B 指令微调模型。详细内容请查阅我们的 Hugging Face 项目([LLaMA-2](https://huggingface.co/hiyouga/Llama-2-Chinese-13b-chat) / [Baichuan](https://huggingface.co/hiyouga/Baichuan-13B-sft))。
2023-08-01 10:08:47 +08:00
2023-10-22 16:15:08 +08:00
[23/07/18] 我们开发了支持训练和测试的**浏览器一体化界面**。请使用 `train_web.py` 在您的浏览器中微调模型。感谢 [@KanadeSiina](https://github.com/KanadeSiina) 和 [@codemayq](https://github.com/codemayq) 在该功能开发中付出的努力。
2023-08-12 21:29:06 +08:00
[23/07/09] 我们开源了 **[FastEdit](https://github.com/hiyouga/FastEdit)** ⚡🩹,一个简单易用的、能迅速编辑大模型事实记忆的工具包。如果您感兴趣请关注我们的 [FastEdit](https://github.com/hiyouga/FastEdit) 项目。
2023-09-09 13:50:29 +08:00
[23/06/29] 我们提供了一个**可复现的**指令模型微调示例,详细内容请查阅 [Baichuan-7B-sft](https://huggingface.co/hiyouga/Baichuan-7B-sft)。
2023-08-12 21:23:05 +08:00
[23/06/22] 我们对齐了[示例 API](src/api_demo.py) 与 [OpenAI API](https://platform.openai.com/docs/api-reference/chat) 的格式,您可以将微调模型接入**任意基于 ChatGPT 的应用**中。
2023-10-22 16:15:08 +08:00
[23/06/03] 我们实现了 4 比特的 LoRA 训练(也称 **[QLoRA](https://github.com/artidoro/qlora)**)。请使用 `--quantization_bit 4` 参数进行 4 比特量化微调。
2023-07-22 14:29:22 +08:00
## 模型
2023-08-07 15:02:02 +08:00
2023-09-06 21:43:06 +08:00
| 模型名 | 模型大小 | 默认模块 | Template |
| -------------------------------------------------------- | --------------------------- | ----------------- | --------- |
2023-09-07 18:54:14 +08:00
| [Baichuan](https://github.com/baichuan-inc/Baichuan-13B) | 7B/13B | W_pack | baichuan |
2023-09-06 21:43:06 +08:00
| [Baichuan2](https://github.com/baichuan-inc/Baichuan2) | 7B/13B | W_pack | baichuan2 |
| [BLOOM](https://huggingface.co/bigscience/bloom) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
| [BLOOMZ](https://huggingface.co/bigscience/bloomz) | 560M/1.1B/1.7B/3B/7.1B/176B | query_key_value | - |
2023-10-27 19:16:28 +08:00
| [ChatGLM3](https://github.com/THUDM/ChatGLM3) | 6B | query_key_value | chatglm3 |
2023-11-10 14:16:10 +08:00
| [Falcon](https://huggingface.co/tiiuae/falcon-7b) | 7B/40B/180B | query_key_value | falcon |
| [InternLM](https://github.com/InternLM/InternLM) | 7B/20B | q_proj,v_proj | intern |
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
2023-11-06 12:25:47 +08:00
| [Mistral](https://huggingface.co/mistralai) | 7B | q_proj,v_proj | mistral |
| [Phi-1.5](https://huggingface.co/microsoft/phi-1_5) | 1.3B | Wqkv | - |
2023-11-09 16:00:24 +08:00
| [Qwen](https://github.com/QwenLM/Qwen) | 7B/14B | c_attn | qwen |
| [XVERSE](https://github.com/xverse-ai) | 7B/13B/65B | q_proj,v_proj | xverse |
2023-08-07 15:02:02 +08:00
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。
>
2023-10-13 13:53:43 +08:00
> 对于所有“基座”Base模型`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”Chat模型请务必使用**对应的模板**。
2023-10-27 22:15:25 +08:00
2023-11-15 18:04:37 +08:00
项目所支持模型的完整列表请参阅 [constants.py](src/llmtuner/extras/constants.py)。
2023-08-11 03:02:53 +08:00
## 训练方法
2023-08-17 11:00:22 +08:00
| 方法 | 全参数训练 | 部分参数训练 | LoRA | QLoRA |
| ---------------------- | ------------------ | ------------------ | ------------------ | ------------------ |
| 预训练 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 指令监督微调 | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: |
| 奖励模型训练 | | | :white_check_mark: | :white_check_mark: |
| PPO 训练 | | | :white_check_mark: | :white_check_mark: |
| DPO 训练 | :white_check_mark: | | :white_check_mark: | :white_check_mark: |
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> 请使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。
2023-08-12 21:23:05 +08:00
2023-07-22 14:29:22 +08:00
## 数据集
2023-11-02 23:10:04 +08:00
<details><summary>预训练数据集</summary>
- [Wiki Demo (en)](data/wiki_demo.txt)
- [RefinedWeb (en)](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
- [RedPajama V2 (en)](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2)
- [Wikipedia (en)](https://huggingface.co/datasets/olm/olm-wikipedia-20221220)
- [Wikipedia (zh)](https://huggingface.co/datasets/pleisto/wikipedia-cn-20230720-filtered)
- [Pile (en)](https://huggingface.co/datasets/EleutherAI/pile)
- [SkyPile (zh)](https://huggingface.co/datasets/Skywork/SkyPile-150B)
- [The Stack (en)](https://huggingface.co/datasets/bigcode/the-stack)
- [StarCoder (en)](https://huggingface.co/datasets/bigcode/starcoderdata)
</details>
<details><summary>指令微调数据集</summary>
- [Stanford Alpaca (en)](https://github.com/tatsu-lab/stanford_alpaca)
- [Stanford Alpaca (zh)](https://github.com/ymcui/Chinese-LLaMA-Alpaca)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
- [Self-cognition (zh)](data/self_cognition.json)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [ShareGPT (zh)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT/tree/main/Chinese-instruction-collection)
- [Guanaco Dataset (multilingual)](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset)
- [BELLE 2M (zh)](https://huggingface.co/datasets/BelleGroup/train_2M_CN)
- [BELLE 1M (zh)](https://huggingface.co/datasets/BelleGroup/train_1M_CN)
- [BELLE 0.5M (zh)](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN)
- [BELLE Dialogue 0.4M (zh)](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M)
- [BELLE School Math 0.25M (zh)](https://huggingface.co/datasets/BelleGroup/school_math_0.25M)
- [BELLE Multiturn Chat 0.8M (zh)](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M)
- [UltraChat (en)](https://github.com/thunlp/UltraChat)
- [LIMA (en)](https://huggingface.co/datasets/GAIR/lima)
- [OpenPlatypus (en)](https://huggingface.co/datasets/garage-bAInd/Open-Platypus)
- [CodeAlpaca 20k (en)](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k)
- [Alpaca CoT (multilingual)](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT)
2023-11-15 18:04:37 +08:00
- [OpenOrca (en)](https://huggingface.co/datasets/Open-Orca/OpenOrca)
2023-11-02 23:10:04 +08:00
- [MathInstruct (en)](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
- [Firefly 1.1M (zh)](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M)
- [Web QA (zh)](https://huggingface.co/datasets/suolyer/webqa)
- [WebNovel (zh)](https://huggingface.co/datasets/zxbsmk/webnovel_cn)
- [Ad Gen (zh)](https://huggingface.co/datasets/HasturOfficial/adgen)
- [ShareGPT Hyperfiltered (en)](https://huggingface.co/datasets/totally-not-an-llm/sharegpt-hyperfiltered-3k)
- [ShareGPT4 (en&zh)](https://huggingface.co/datasets/shibing624/sharegpt_gpt4)
- [UltraChat 200k (en)](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k)
- [AgentInstruct (en)](https://huggingface.co/datasets/THUDM/AgentInstruct)
2023-11-02 23:42:49 +08:00
- [LMSYS Chat 1M (en)](https://huggingface.co/datasets/lmsys/lmsys-chat-1m)
2023-11-02 23:10:04 +08:00
- [Evol Instruct V2 (en)](https://huggingface.co/datasets/WizardLM/WizardLM_evol_instruct_V2_196k)
</details>
<details><summary>偏好数据集</summary>
- [HH-RLHF (en)](https://huggingface.co/datasets/Anthropic/hh-rlhf)
- [Open Assistant (multilingual)](https://huggingface.co/datasets/OpenAssistant/oasst1)
- [GPT-4 Generated Data (en&zh)](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM)
</details>
使用方法请参考 [data/README_zh.md](data/README_zh.md) 文件。
2023-07-22 14:29:22 +08:00
部分数据集的使用需要确认,我们推荐使用下述命令登录您的 Hugging Face 账户。
```bash
pip install --upgrade huggingface_hub
huggingface-cli login
```
## 软件依赖
- Python 3.8+ 和 PyTorch 1.13.1+
- 🤗Transformers, Datasets, Accelerate, PEFT 和 TRL
2023-09-11 17:31:34 +08:00
- sentencepiece, protobuf 和 tiktoken
- jieba, rouge-chinese 和 nltk (用于评估及预测)
- gradio 和 matplotlib (用于网页端交互)
- uvicorn, fastapi 和 sse-starlette (用于 API)
2023-07-22 14:29:22 +08:00
以及 **强而有力的 GPU**
2023-07-22 14:29:22 +08:00
## 如何使用
2023-07-22 14:29:22 +08:00
### 数据准备(可跳过)
2023-11-02 23:10:04 +08:00
关于数据集文件的格式,请参考 [data/README_zh.md](data/README_zh.md) 的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-11-02 23:10:04 +08:00
> 使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README_zh.md`。
2023-07-22 14:29:22 +08:00
### 环境搭建(可跳过)
```bash
2023-10-12 21:42:29 +08:00
git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -r requirements.txt
```
2023-07-22 14:29:22 +08:00
如果要在 Windows 平台上开启量化 LoRAQLoRA需要安装预编译的 `bitsandbytes` 库, 支持 CUDA 11.1 到 12.1.
```bash
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.39.1-py3-none-win_amd64.whl
```
2023-08-18 01:51:55 +08:00
### 单 GPU 训练
2023-09-10 21:01:20 +08:00
> [!IMPORTANT]
2023-09-10 20:43:56 +08:00
> 如果您使用多张 GPU 训练模型,请移步[多 GPU 分布式训练](#多-gpu-分布式训练)部分。
2023-08-18 01:51:55 +08:00
#### 预训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage pt \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
--do_train \
--dataset wiki_demo \
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
```
2023-08-18 01:51:55 +08:00
#### 指令监督微调
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
```
2023-08-18 01:51:55 +08:00
#### 奖励模型训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage rm \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_zh \
--template default \
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-07-28 17:36:00 +08:00
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_rm_checkpoint \
2023-08-11 03:02:53 +08:00
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
2023-08-18 11:43:10 +08:00
--learning_rate 1e-6 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
2023-08-18 01:51:55 +08:00
#### PPO 训练
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage ppo \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-07-28 17:36:00 +08:00
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss
```
2023-08-18 01:51:55 +08:00
#### DPO 训练
2023-08-11 03:02:53 +08:00
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage dpo \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-08-11 03:02:53 +08:00
--do_train \
--dataset comparison_gpt4_zh \
--template default \
--finetuning_type lora \
2023-08-18 11:43:10 +08:00
--lora_target q_proj,v_proj \
2023-08-11 03:02:53 +08:00
--resume_lora_training False \
--checkpoint_dir path_to_sft_checkpoint \
--output_dir path_to_dpo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--plot_loss \
--fp16
```
2023-07-22 14:29:22 +08:00
### 多 GPU 分布式训练
2023-08-12 21:23:05 +08:00
#### 使用 Huggingface Accelerate
```bash
2023-07-22 14:29:22 +08:00
accelerate config # 首先配置分布式环境
accelerate launch src/train_bash.py # 参数同上
```
2023-09-10 20:43:56 +08:00
<details><summary>LoRA 训练的 Accelerate 配置示例</summary>
```yaml
compute_environment: LOCAL_MACHINE
2023-09-10 20:43:56 +08:00
distributed_type: MULTI_GPU
downcast_bf16: 'no'
2023-09-10 20:43:56 +08:00
gpu_ids: all
machine_rank: 0
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 4
rdzv_backend: static
same_network: true
tpu_env: []
tpu_use_cluster: false
tpu_use_sudo: false
use_cpu: false
```
</details>
2023-08-12 21:23:05 +08:00
#### 使用 DeepSpeed
```bash
2023-08-12 21:25:19 +08:00
deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \
--deepspeed ds_config.json \
... # 参数同上
2023-08-12 21:23:05 +08:00
```
2023-09-10 20:43:56 +08:00
<details><summary>使用 DeepSpeed ZeRO-2 进行全参数训练的 DeepSpeed 配置示例</summary>
2023-08-12 21:23:05 +08:00
```json
{
2023-09-10 21:01:20 +08:00
"train_batch_size": "auto",
2023-08-12 21:23:05 +08:00
"train_micro_batch_size_per_gpu": "auto",
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"zero_allow_untested_optimizer": true,
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"initial_scale_power": 16,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 5e8,
"reduce_scatter": true,
"reduce_bucket_size": 5e8,
"overlap_comm": false,
"contiguous_gradients": true
}
}
```
</details>
2023-09-22 14:34:13 +08:00
### 导出微调后的完整模型
```bash
2023-08-18 01:51:55 +08:00
python src/export_model.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
2023-10-19 15:52:24 +08:00
--export_dir path_to_export
```
### API 服务
2023-07-22 14:29:22 +08:00
```bash
python src/api_demo.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-10 20:43:56 +08:00
> 关于 API 文档请见 `http://localhost:8000/docs`。
### 命令行测试
```bash
python src/cli_demo.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
### 浏览器测试
```bash
python src/web_demo.py \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint
```
2023-09-23 21:10:17 +08:00
### 模型评估
```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--template vanilla \
--task ceval \
--split validation \
--lang zh \
--n_shot 5 \
--batch_size 4
```
### 模型预测
```bash
2023-08-18 01:51:55 +08:00
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
--stage sft \
2023-08-18 11:43:10 +08:00
--model_name_or_path path_to_llama_model \
2023-09-23 00:34:17 +08:00
--do_predict \
2023-08-18 01:51:55 +08:00
--dataset alpaca_gpt4_zh \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
2023-09-23 00:34:17 +08:00
--output_dir path_to_predict_result \
2023-08-18 01:51:55 +08:00
--per_device_eval_batch_size 8 \
--max_samples 100 \
--predict_with_generate
```
2023-09-10 21:01:20 +08:00
> [!NOTE]
2023-09-23 21:10:17 +08:00
> 我们建议在量化模型的预测中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。
2023-10-29 22:07:13 +08:00
## 使用了 LLaMA Factory 的项目
- **[StarWhisper](https://github.com/Yu-Yang-Li/StarWhisper)**: 天文大模型 StarWhisper基于 ChatGLM2-6B 和 Qwen-14B 在天文数据上微调而得。
- **[DISC-LawLLM](https://github.com/FudanDISC/DISC-LawLLM)**: 中文法律领域大模型 DISC-LawLLM基于 Baichuan-13B 微调而得,具有法律推理和知识检索能力。
- **[Sunsimiao](https://github.com/thomas-yanxin/Sunsimiao)**: 孙思邈中文医疗大模型 Sumsimiao基于 Baichuan-7B 和 ChatGLM-6B 在中文医疗数据上微调而得。
2023-10-29 22:53:47 +08:00
- **[CareGPT](https://github.com/WangRongsheng/CareGPT)**: 医疗大模型项目 CareGPT基于 LLaMA2-7B 和 Baichuan-13B 在中文医疗数据上微调而得。
2023-10-29 22:07:13 +08:00
## 协议
2023-07-22 14:29:22 +08:00
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
2023-11-09 16:00:24 +08:00
使用模型权重时,请遵循对应的模型协议:[Baichuan](https://huggingface.co/baichuan-inc/Baichuan-13B-Base/resolve/main/Community%20License%20for%20Baichuan-13B%20Model.pdf) / [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/resolve/main/Community%20License%20for%20Baichuan2%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [InternLM](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [Mistral](LICENSE) / [Phi-1.5](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/LICENSE) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf)
## 引用
2023-07-22 14:29:22 +08:00
如果您觉得此项目有帮助,请考虑以下列格式引用
```bibtex
2023-10-12 21:42:29 +08:00
@Misc{llama-factory,
title = {LLaMA Factory},
author = {hiyouga},
2023-10-12 21:42:29 +08:00
howpublished = {\url{https://github.com/hiyouga/LLaMA-Factory}},
year = {2023}
}
```
## 致谢
2023-10-09 20:02:50 +08:00
本项目受益于 [PEFT](https://github.com/huggingface/peft)、[QLoRA](https://github.com/artidoro/qlora) 和 [FastChat](https://github.com/lm-sys/FastChat),感谢以上诸位作者的付出。
## Star History
2023-10-12 21:42:29 +08:00
![Star History Chart](https://api.star-history.com/svg?repos=hiyouga/LLaMA-Factory&type=Date)