2023-05-28 18:09:04 +08:00
# LLaMA Efficient Tuning
2023-05-29 21:54:01 +08:00
![GitHub Repo stars ](https://img.shields.io/github/stars/hiyouga/LLaMA-Efficient-Tuning?style=social )
![GitHub Code License ](https://img.shields.io/github/license/hiyouga/LLaMA-Efficient-Tuning )
![GitHub last commit ](https://img.shields.io/github/last-commit/hiyouga/LLaMA-Efficient-Tuning )
2023-05-29 21:53:02 +08:00
![GitHub pull request ](https://img.shields.io/badge/PRs-welcome-blue )
2023-05-31 16:54:06 +08:00
## Changelog
[23/05/31] Now we support training the BLOOM & BLOOMZ models in this repo. Try `--model_name_or_path bigscience/bloomz-7b1-mt` argument to use the BLOOMZ model.
## Supported Models
- [LLaMA ](https://github.com/facebookresearch/llama ) (7B, 13B, 33B, 65B)
- [BLOOM ](https://huggingface.co/bigscience/bloom ) & [BLOOMZ ](https://huggingface.co/bigscience/bloomz ) (560M, 1.1B, 1.7B, 3B, 7.1B, 176B)
2023-05-31 16:57:43 +08:00
## Supported Training Approaches
2023-05-31 16:54:06 +08:00
- [(Continually) pre-training ](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf )
- Full-parameter training
2023-05-31 16:57:43 +08:00
- Partial-parameter training
2023-05-31 16:54:06 +08:00
- [LoRA ](https://arxiv.org/abs/2106.09685 )
- [Supervised fine-tuning ](https://arxiv.org/abs/2109.01652 )
- Full-parameter training
2023-05-31 16:57:43 +08:00
- Partial-parameter training
2023-05-31 16:54:06 +08:00
- [LoRA ](https://arxiv.org/abs/2106.09685 )
- [RLHF ](https://arxiv.org/abs/2203.02155 )
- [LoRA ](https://arxiv.org/abs/2106.09685 )
## Provided Datasets
- For pre-training:
- [Wiki Demo ](data/wiki_demo.txt )
- For supervised fine-tuning:
- [Stanford Alpaca ](https://github.com/tatsu-lab/stanford_alpaca )
- [Stanford Alpaca (Chinese) ](https://github.com/ymcui/Chinese-LLaMA-Alpaca )
- [GPT-4 Generated Data ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
- [BELLE 2M ](https://huggingface.co/datasets/BelleGroup/train_2M_CN )
- [BELLE 1M ](https://huggingface.co/datasets/BelleGroup/train_1M_CN )
- [BELLE 0.5M ](https://huggingface.co/datasets/BelleGroup/train_0.5M_CN )
- [BELLE Dialogue 0.4M ](https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M )
- [BELLE School Math 0.25M ](https://huggingface.co/datasets/BelleGroup/school_math_0.25M )
- [BELLE Multiturn Chat 0.8M ](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M )
- [Guanaco Dataset ](https://huggingface.co/datasets/JosephusCheung/GuanacoDataset )
- [Firefly 1.1M ](https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M )
- [CodeAlpaca 20k ](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k )
- [Alpaca CoT ](https://huggingface.co/datasets/QingyiSi/Alpaca-CoT )
- [Web QA (Chinese) ](https://huggingface.co/datasets/suolyer/webqa )
- [UltraChat ](https://github.com/thunlp/UltraChat )
- For reward model training:
- [HH-RLHF ](https://huggingface.co/datasets/Anthropic/hh-rlhf )
- [GPT-4 Generated Data ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
- [GPT-4 Generated Data (Chinese) ](https://github.com/Instruction-Tuning-with-GPT-4/GPT-4-LLM )
Please refer to [data/README.md ](data/README.md ) for details.
Some datasets require confirmation before using them, so we recommend logging in with your HuggingFace account using these commands.
```bash
pip install --upgrade huggingface_hub
huggingface-cli login
```
2023-05-29 21:53:02 +08:00
## Requirement
2023-05-31 16:54:06 +08:00
- Python 3.8+ and PyTorch 1.13.1+
2023-05-29 21:53:02 +08:00
- 🤗Transformers, Datasets, Accelerate, PEFT and TRL
- protobuf, cpm_kernels and sentencepiece
- jieba, rouge_chinese and nltk (used at evaluation)
- gradio and mdtex2html (used in web_demo.py)
And **powerful GPUs** !
## Getting Started
### Data Preparation (optional)
Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script ](https://huggingface.co/docs/datasets/dataset_script ) with multiple files to create a custom dataset.
Note: please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md` .
### Dependence Installation (optional)
```bash
git clone https://github.com/hiyouga/LLaMA-Efficient-Tuning.git
conda create -n llama_etuning python=3.10
conda activate llama_etuning
cd LLaMA-Efficient-Tuning
pip install -r requirements.txt
```
### LLaMA Weights Preparation
2023-05-28 18:09:04 +08:00
1. Download the weights of the LLaMA models.
2023-05-31 16:54:06 +08:00
2. Convert them to HF format using the following command.
2023-05-28 18:09:04 +08:00
2023-05-31 16:54:06 +08:00
```bash
python -m transformers.models.llama.convert_llama_weights_to_hf \
2023-05-29 21:53:02 +08:00
--input_dir path_to_llama_weights --model_size 7B --output_dir path_to_llama_model
```
### (Continually) Pre-Training
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_pt.py \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset wiki_demo \
--finetuning_type lora \
--output_dir path_to_pt_checkpoint \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--plot_loss \
--fp16
2023-05-28 18:09:04 +08:00
```
2023-05-29 21:53:02 +08:00
### Supervised Fine-Tuning
2023-05-28 18:09:04 +08:00
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \
2023-05-29 21:53:02 +08:00
--model_name_or_path path_to_llama_model \
2023-05-28 18:09:04 +08:00
--do_train \
2023-05-29 21:53:02 +08:00
--dataset alpaca_gpt4_en \
2023-05-28 18:09:04 +08:00
--finetuning_type lora \
2023-05-29 21:53:02 +08:00
--checkpoint_dir path_to_pt_checkpoint \
2023-05-28 18:09:04 +08:00
--output_dir path_to_sft_checkpoint \
--overwrite_cache \
2023-05-29 21:53:02 +08:00
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--resume_lora_training False \
--plot_loss \
--fp16
```
### Reward Model Training
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_rm.py \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset comparison_gpt4_en \
--finetuning_type lora \
--checkpoint_dir path_to_pt_checkpoint \
--output_dir path_to_rm_checkpoint \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
2023-05-28 18:09:04 +08:00
--lr_scheduler_type cosine \
--logging_steps 10 \
2023-05-29 21:53:02 +08:00
--save_steps 1000 \
2023-05-28 18:09:04 +08:00
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
2023-05-29 21:53:02 +08:00
--plot_loss \
2023-05-28 18:09:04 +08:00
--fp16
```
2023-05-29 21:53:02 +08:00
### PPO Training (RLHF)
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_ppo.py \
--model_name_or_path path_to_llama_model \
--do_train \
--dataset alpaca_gpt4_en \
--finetuning_type lora \
--checkpoint_dir path_to_pt_checkpoint,path_to_sft_checkpoint \
--reward_model path_to_rm_checkpoint \
--output_dir path_to_ppo_checkpoint \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 1000 \
--learning_rate 1e-5 \
--num_train_epochs 1.0 \
--resume_lora_training False \
--plot_loss
```
### Distributed Training
```bash
accelerate config # configure the environment
accelerate launch src/train_XX.py # arguments (same as above)
```
### Evaluation (BLEU and ROUGE_CHINESE)
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_sft.py \
--model_name_or_path path_to_llama_model \
--do_eval \
--dataset alpaca_gpt4_en \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_eval_result \
--per_device_eval_batch_size 8 \
--max_samples 50 \
--predict_with_generate
```
### CLI Demo
```bash
python src/cli_demo.py \
--model_name_or_path path_to_llama_model \
--checkpoint_dir path_to_checkpoint
```
### Web Demo
```bash
python src/web_demo.py \
--model_name_or_path path_to_llama_model \
--checkpoint_dir path_to_checkpoint
```
### Export model
```bash
python src/export_model.py \
--model_name_or_path path_to_llama_model \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
```
## License
2023-05-31 16:54:06 +08:00
This repository is licensed under the [Apache-2.0 License ](LICENSE ).
Please follow the [Model Card ](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md ) to use the LLaMA models.
Please follow the [RAIL License ](https://huggingface.co/spaces/bigscience/license ) to use the BLOOM & BLOOMZ models.
2023-05-29 21:53:02 +08:00
## Citation
If this work is helpful, please cite as:
```bibtex
@Misc {llama-efficient-tuning,
title = {LLaMA Efficient Tuning},
author = {hiyouga},
howpublished = {\url{https://github.com/hiyouga/LLaMA-Efficient-Tuning}},
year = {2023}
}
```
## Acknowledgement
This repo is a sibling of [ChatGLM-Efficient-Tuning ](https://github.com/hiyouga/ChatGLM-Efficient-Tuning ). They share a similar code structure of efficient tuning on large language models.