LLaMA-Factory-Mirror/data/README.md

135 lines
5.0 KiB
Markdown
Raw Normal View History

2023-07-19 20:59:15 +08:00
If you are using a custom dataset, please provide your dataset definition in the following format in `dataset_info.json`.
2023-05-28 18:09:04 +08:00
```json
"dataset_name": {
2023-12-18 19:09:31 +08:00
"hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore script_url and file_name)",
"ms_hub_url": "the name of the dataset repository on the ModelScope hub. (if specified, ignore script_url and file_name)",
"script_url": "the name of the directory containing a dataset loading script. (if specified, ignore file_name)",
2023-12-09 20:53:18 +08:00
"file_name": "the name of the dataset file in this directory. (required if above are not specified)",
2023-11-03 00:15:23 +08:00
"file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)",
"subset": "the name of the subset. (optional, default: None)",
2023-12-09 20:53:18 +08:00
"folder": "the name of the folder of the dataset repository on the Hugging Face hub. (optional, default: None)",
2023-11-03 00:15:23 +08:00
"ranking": "whether the dataset is a preference dataset or not. (default: false)",
"formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})",
2024-02-10 16:39:19 +08:00
"columns (optional)": {
2024-01-21 22:17:48 +08:00
"prompt": "the column name in the dataset containing the prompts. (default: instruction)",
"query": "the column name in the dataset containing the queries. (default: input)",
"response": "the column name in the dataset containing the responses. (default: output)",
"history": "the column name in the dataset containing the histories. (default: None)",
"messages": "the column name in the dataset containing the messages. (default: conversations)",
"system": "the column name in the dataset containing the system prompts. (default: None)",
"tools": "the column name in the dataset containing the tool description. (default: None)"
},
2024-02-10 16:39:19 +08:00
"tags (optional, used for the sharegpt format)": {
2024-01-21 22:17:48 +08:00
"role_tag": "the key in the message represents the identity. (default: from)",
"content_tag": "the key in the message represents the content. (default: value)",
"user_tag": "the value of the role_tag represents the user. (default: human)",
"assistant_tag": "the value of the role_tag represents the assistant. (default: gpt)",
"observation_tag": "the value of the role_tag represents the tool results. (default: observation)",
2024-02-09 02:32:20 +08:00
"function_tag": "the value of the role_tag represents the function call. (default: function_call)",
2024-02-10 16:39:19 +08:00
"system_tag": "the value of the role_tag represents the system prompt. (default: system, can override system column)"
}
2023-05-28 18:09:04 +08:00
}
```
2023-11-03 00:15:23 +08:00
Given above, you can use the custom dataset via specifying `--dataset dataset_name`.
2024-03-31 18:29:50 +08:00
----
2023-11-03 00:15:23 +08:00
Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format:
```json
[
{
"instruction": "user instruction (required)",
"input": "user input (optional)",
"output": "model response (required)",
2023-12-12 19:45:59 +08:00
"system": "system prompt (optional)",
2023-11-03 00:15:23 +08:00
"history": [
["user instruction in the first round (optional)", "model response in the first round (optional)"],
["user instruction in the second round (optional)", "model response in the second round (optional)"]
]
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
```json
"dataset_name": {
"columns": {
"prompt": "instruction",
"query": "input",
"response": "output",
2023-12-12 19:45:59 +08:00
"system": "system",
2023-11-03 00:15:23 +08:00
"history": "history"
}
}
```
2024-02-10 21:04:29 +08:00
The `query` column will be concatenated with the `prompt` column and used as the user prompt, then the user prompt would be `prompt\nquery`. The `response` column represents the model response.
2023-11-03 00:15:23 +08:00
2024-02-10 21:04:29 +08:00
The `system` column will be used as the system prompt. The `history` column is a list consisting string tuples representing prompt-response pairs in the history. Note that the responses in the history **will also be used for training**.
2023-11-03 00:15:23 +08:00
For the pre-training datasets, only the `prompt` column will be used for training.
For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example:
2023-08-22 19:46:09 +08:00
```json
{
2023-11-03 00:15:23 +08:00
"instruction": "user instruction",
"input": "user input",
2023-08-22 19:46:09 +08:00
"output": [
2023-11-03 00:15:23 +08:00
"chosen answer",
"rejected answer"
]
}
```
2023-11-03 00:15:23 +08:00
2024-03-31 18:29:50 +08:00
Remember to set `"ranking": true` for the preference datasets.
----
2023-11-03 00:15:23 +08:00
The dataset in sharegpt format should follow the below format:
```json
[
{
"conversations": [
{
"from": "human",
"value": "user instruction"
},
{
"from": "gpt",
"value": "model response"
}
2023-12-12 19:45:59 +08:00
],
2024-01-21 22:17:48 +08:00
"system": "system prompt (optional)",
"tools": "tool description (optional)"
2023-11-03 00:15:23 +08:00
}
]
```
Regarding the above dataset, the `columns` in `dataset_info.json` should be:
```json
"dataset_name": {
"columns": {
"messages": "conversations",
2024-01-21 22:17:48 +08:00
"system": "system",
"tools": "tools"
},
"tags": {
"role_tag": "from",
"content_tag": "value",
"user_tag": "human",
"assistant_tag": "gpt"
2023-11-03 00:15:23 +08:00
}
}
```
2024-02-10 21:04:29 +08:00
where the `messages` column should be a list following the `u/a/u/a/u/a` order.
2023-11-03 00:15:23 +08:00
Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.