forked from p04798526/LLaMA-Factory-Mirror
commit
06e1b120e1
|
@ -0,0 +1,115 @@
|
|||
# coding=utf-8
|
||||
# Chat with LLaMA in API mode.
|
||||
# Usage: python cli_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
||||
|
||||
# Call:
|
||||
# curl --location 'http://127.0.0.1:8000' \
|
||||
# --header 'Content-Type: application/json' \
|
||||
# --data '{"prompt": "Hello there!","history": []}'
|
||||
|
||||
# Response:
|
||||
# {
|
||||
# "response":"'I am a second year student at the University of British Columbia, in Vancouver.\\nMy major
|
||||
# is Computer Science and my minor (double degree) area was Mathematics/Statistics with an emphasis on Operations
|
||||
# Research & Management Sciences which means that when it comes to solving problems using computers or any kind data
|
||||
# analysis; whether its from businesses , governments etc., i can help you out :) .'",
|
||||
# "history":"[('Hello there!',
|
||||
# 'I am a second year student at the University of British Columbia, in Vancouver.\\nMy major is Computer Science and
|
||||
# my minor (double degree) area was Mathematics/Statistics with an emphasis on Operations Research & Management
|
||||
# Sciences which means that when it comes to solving problems using computers or any kind data analysis; whether its
|
||||
# from businesses , governments etc., i can help you out :) .')]",
|
||||
# "status":200,
|
||||
# "time":"2023-05-30 06:57:38" }
|
||||
|
||||
import datetime
|
||||
import torch
|
||||
from utils import ModelArguments, auto_configure_device_map, load_pretrained
|
||||
from transformers import HfArgumentParser
|
||||
import json
|
||||
import uvicorn
|
||||
from fastapi import FastAPI, Request
|
||||
|
||||
DEVICE = "cuda"
|
||||
|
||||
|
||||
def torch_gc():
|
||||
if torch.cuda.is_available():
|
||||
num_gpus = torch.cuda.device_count()
|
||||
for device_id in range(num_gpus):
|
||||
with torch.cuda.device(device_id):
|
||||
torch.cuda.empty_cache()
|
||||
torch.cuda.ipc_collect()
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
@app.post("/")
|
||||
async def create_item(request: Request):
|
||||
global model, tokenizer
|
||||
|
||||
# Parse the request JSON
|
||||
json_post_raw = await request.json()
|
||||
json_post = json.dumps(json_post_raw)
|
||||
json_post_list = json.loads(json_post)
|
||||
prompt = json_post_list.get('prompt')
|
||||
history = json_post_list.get('history')
|
||||
|
||||
# Tokenize the input prompt
|
||||
inputs = tokenizer([prompt], return_tensors="pt")
|
||||
inputs = inputs.to(model.device)
|
||||
|
||||
# Generation arguments
|
||||
gen_kwargs = {
|
||||
"do_sample": True,
|
||||
"top_p": 0.9,
|
||||
"top_k": 40,
|
||||
"temperature": 0.7,
|
||||
"num_beams": 1,
|
||||
"max_new_tokens": 256,
|
||||
"repetition_penalty": 1.5
|
||||
}
|
||||
|
||||
# Generate response
|
||||
with torch.no_grad():
|
||||
generation_output = model.generate(**inputs, **gen_kwargs)
|
||||
outputs = generation_output.tolist()[0][len(inputs["input_ids"][0]):]
|
||||
response = tokenizer.decode(outputs, skip_special_tokens=True)
|
||||
|
||||
# Update history
|
||||
history = history + [(prompt, response)]
|
||||
|
||||
# Prepare response
|
||||
now = datetime.datetime.now()
|
||||
time = now.strftime("%Y-%m-%d %H:%M:%S")
|
||||
answer = {
|
||||
"response": repr(response),
|
||||
"history": repr(history),
|
||||
"status": 200,
|
||||
"time": time
|
||||
}
|
||||
|
||||
# Log and clean up
|
||||
log = "[" + time + "] " + '", prompt:"' + prompt + '", response:"' + repr(response) + '"'
|
||||
print(log)
|
||||
torch_gc()
|
||||
|
||||
return answer
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = HfArgumentParser(ModelArguments)
|
||||
model_args, = parser.parse_args_into_dataclasses()
|
||||
model, tokenizer = load_pretrained(model_args)
|
||||
|
||||
if torch.cuda.device_count() > 1:
|
||||
from accelerate import dispatch_model
|
||||
|
||||
device_map = auto_configure_device_map(torch.cuda.device_count())
|
||||
model = dispatch_model(model, device_map)
|
||||
else:
|
||||
model = model.cuda()
|
||||
|
||||
model.eval()
|
||||
|
||||
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
|
Loading…
Reference in New Issue