forked from p04798526/LLaMA-Factory-Mirror
Support distributed BAdam.
This commit is contained in:
parent
ea1f3ba5e0
commit
0f72aac8c9
|
@ -209,24 +209,20 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
|||
):
|
||||
raise ValueError("Distributed training does not support layer-wise GaLore.")
|
||||
|
||||
<<<<<<< HEAD
|
||||
# if (
|
||||
# finetuning_args.use_badam
|
||||
# and finetuning_args.badam_mode == "layer"
|
||||
# and training_args.parallel_mode.value == "distributed"
|
||||
# ):
|
||||
# raise ValueError("Layer-wise BAdam does not yet support distributed training, use ratio-wise BAdam.")
|
||||
=======
|
||||
if (
|
||||
finetuning_args.use_badam
|
||||
and finetuning_args.badam_mode == "layer"
|
||||
and training_args.parallel_mode == ParallelMode.DISTRIBUTED
|
||||
and training_args.parallel_mode.value == "distributed"
|
||||
):
|
||||
raise ValueError("Layer-wise BAdam does not yet support distributed training, use ratio-wise BAdam.")
|
||||
>>>>>>> upstream/main
|
||||
if finetuning_args.badam_mode == "ratio":
|
||||
raise ValueError("Ratio-wise BAdam does not yet support distributed training, use layer-wise BAdam: --badam_mode layer")
|
||||
if (finetuning_args.badam_mode == "layer"
|
||||
and training_args.deepspeed_plugin is not None
|
||||
and training_args.deepspeed_plugin.zero_stage < 3
|
||||
):
|
||||
raise ValueError(f"Layer-wise BAdam only supports DeepSpeed ZeRO 3 stage, got stage {self.args.deepspeed_plugin.zero_stage}")
|
||||
|
||||
if (finetuning_args.use_galore or finetuning_args.use_badam) and training_args.deepspeed is not None:
|
||||
raise ValueError("GaLore and BAdam are incompatible with DeepSpeed yet.")
|
||||
if (finetuning_args.use_galore) and training_args.deepspeed is not None:
|
||||
raise ValueError("GaLore are incompatible with DeepSpeed yet.")
|
||||
|
||||
if model_args.infer_backend == "vllm":
|
||||
raise ValueError("vLLM backend is only available for API, CLI and Web.")
|
||||
|
|
|
@ -100,6 +100,12 @@ class CustomDPOTrainer(DPOTrainer):
|
|||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
if (self.args.deepspeed_plugin is not None
|
||||
and self.args.deepspeed_plugin.zero_stage == 3
|
||||
):
|
||||
from badam.utils import BAdamZeRO3Callback
|
||||
self.callback_handler.add_callback(BAdamZeRO3Callback)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
|
|
|
@ -95,6 +95,12 @@ class CustomKTOTrainer(KTOTrainer):
|
|||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
if (self.args.deepspeed_plugin is not None
|
||||
and self.args.deepspeed_plugin.zero_stage == 3
|
||||
):
|
||||
from badam.utils import BAdamZeRO3Callback
|
||||
self.callback_handler.add_callback(BAdamZeRO3Callback)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
|
|
|
@ -170,6 +170,12 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
if (self.args.deepspeed_plugin is not None
|
||||
and self.args.deepspeed_plugin.zero_stage == 3
|
||||
):
|
||||
from badam.utils import BAdamZeRO3Callback
|
||||
self.callback_handler.add_callback(BAdamZeRO3Callback)
|
||||
|
||||
def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
|
||||
r"""
|
||||
Implements training loop for the PPO stage, like _inner_training_loop() in Huggingface's Trainer.
|
||||
|
|
|
@ -52,6 +52,12 @@ class CustomTrainer(Trainer):
|
|||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
if (self.args.deepspeed_plugin is not None
|
||||
and self.args.deepspeed_plugin.zero_stage == 3
|
||||
):
|
||||
from badam.utils import BAdamZeRO3Callback
|
||||
self.callback_handler.add_callback(BAdamZeRO3Callback)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
|
|
|
@ -76,6 +76,12 @@ class PairwiseTrainer(Trainer):
|
|||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
if (self.args.deepspeed_plugin is not None
|
||||
and self.args.deepspeed_plugin.zero_stage == 3
|
||||
):
|
||||
from badam.utils import BAdamZeRO3Callback
|
||||
self.callback_handler.add_callback(BAdamZeRO3Callback)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
|
|
|
@ -57,9 +57,14 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|||
|
||||
if finetuning_args.use_badam:
|
||||
from badam import clip_grad_norm_for_sparse_tensor
|
||||
|
||||
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
|
||||
|
||||
if (self.args.deepspeed_plugin is not None
|
||||
and self.args.deepspeed_plugin.zero_stage == 3
|
||||
):
|
||||
from badam.utils import BAdamZeRO3Callback
|
||||
self.callback_handler.add_callback(BAdamZeRO3Callback)
|
||||
|
||||
def create_optimizer(self) -> "torch.optim.Optimizer":
|
||||
if self.optimizer is None:
|
||||
self.optimizer = create_custom_optimzer(self.model, self.args, self.finetuning_args)
|
||||
|
@ -80,21 +85,6 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
|
|||
if self.processor is not None:
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
||||
def training_step(self, *args, **kwargs):
|
||||
r"""
|
||||
Update the reference to deepspeed optimizer
|
||||
"""
|
||||
if self.finetuning_args.use_badam and \
|
||||
self.args.deepspeed_plugin is not None and \
|
||||
self.args.deepspeed_plugin.zero_stage == 3:
|
||||
|
||||
ds_optim = self.optimizer.optimizer
|
||||
badam_optim = ds_optim.optimizer
|
||||
badam_optim.ds_optimizer = ds_optim
|
||||
|
||||
return super().training_step(*args, **kwargs)
|
||||
|
||||
|
||||
def prediction_step(
|
||||
self,
|
||||
model: "torch.nn.Module",
|
||||
|
|
Loading…
Reference in New Issue