forked from p04798526/LLaMA-Factory-Mirror
Update trainer.py
This commit is contained in:
parent
34a2c5087a
commit
24499f40dc
|
@ -4,7 +4,6 @@ from types import MethodType
|
|||
from typing import TYPE_CHECKING, Dict, Literal, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
from torch.utils.data import RandomSampler
|
||||
from transformers import Trainer
|
||||
from trl import KTOTrainer
|
||||
from trl.trainer import disable_dropout_in_model
|
||||
|
@ -14,6 +13,7 @@ from ..utils import create_custom_optimzer, create_custom_scheduler
|
|||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import torch.utils.data
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
@ -85,6 +85,12 @@ class CustomKTOTrainer(KTOTrainer):
|
|||
create_custom_scheduler(self.args, num_training_steps, optimizer)
|
||||
return super().create_scheduler(num_training_steps, optimizer)
|
||||
|
||||
def _get_train_sampler(self) -> Optional["torch.utils.data.Sampler"]:
|
||||
r"""
|
||||
Replaces the sequential sampler of KTO Trainer created by trl with the random sampler.
|
||||
"""
|
||||
return Trainer._get_train_sampler(self)
|
||||
|
||||
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
|
||||
super()._save(output_dir, state_dict)
|
||||
if self.processor is not None:
|
||||
|
@ -174,21 +180,6 @@ class CustomKTOTrainer(KTOTrainer):
|
|||
|
||||
return reference_chosen_logps, reference_rejected_logps, reference_kl_logps
|
||||
|
||||
def has_length(self,dataset):
|
||||
"""
|
||||
Checks if the dataset implements __len__() and it doesn't raise an error
|
||||
"""
|
||||
try:
|
||||
return len(dataset) is not None
|
||||
except TypeError:
|
||||
# TypeError: len() of unsized object
|
||||
return False
|
||||
|
||||
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
|
||||
if self.train_dataset is None or not self.has_length(self.train_dataset):
|
||||
return None
|
||||
return RandomSampler(self.train_dataset)
|
||||
|
||||
def get_batch_loss_metrics(
|
||||
self,
|
||||
model: "PreTrainedModel",
|
||||
|
|
Loading…
Reference in New Issue