forked from p04798526/LLaMA-Factory-Mirror
update readme
This commit is contained in:
parent
e057c8de48
commit
27ba1b63ce
|
@ -68,6 +68,8 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||
|
||||
## Changelog
|
||||
|
||||
[24/04/26] We supported fine-tuning the **LLaVA-1.5** multimodal LLMs. See `examples/lora_single_gpu/sft_mllm.sh` for usage.
|
||||
|
||||
[24/04/22] We provided a **[Colab notebook](https://colab.research.google.com/drive/1eRTPn37ltBbYsISy9Aw2NuI2Aq5CQrD9?usp=sharing)** for fine-tuning the Llama-3 model on a free T4 GPU. Two Llama-3-derived models fine-tuned using LLaMA Factory are available at Hugging Face, check [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) and [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese) for details.
|
||||
|
||||
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See `examples/extras/mod` for usage.
|
||||
|
@ -148,6 +150,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
|
|||
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
|
||||
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
|
||||
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | q_proj,v_proj | vicuna |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | q_proj,v_proj | - |
|
||||
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
|
||||
|
@ -457,7 +460,7 @@ If you have a project that should be incorporated, please contact via email or c
|
|||
|
||||
This repository is licensed under the [Apache-2.0 License](LICENSE).
|
||||
|
||||
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
Please follow the model licenses to use the corresponding model weights: [Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2/LLaVA-1.5](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
|
||||
## Citation
|
||||
|
||||
|
|
|
@ -68,6 +68,8 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||
|
||||
## 更新日志
|
||||
|
||||
[24/04/26] 我们支持了多模态模型 **LLaVA-1.5** 的微调。详细用法请参照 `examples/lora_single_gpu/sft_mllm.sh`。
|
||||
|
||||
[24/04/22] 我们提供了在免费 T4 GPU 上微调 Llama-3 模型的 **[Colab 笔记本](https://colab.research.google.com/drive/1d5KQtbemerlSDSxZIfAaWXhKr30QypiK?usp=sharing)**。Hugging Face 社区公开了两个利用 LLaMA Factory 微调的 Llama-3 模型,详情请见 [Llama3-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat) 和 [Llama3-Chinese](https://huggingface.co/zhichen/Llama3-Chinese)。
|
||||
|
||||
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 `examples/extras/mod`。
|
||||
|
@ -148,6 +150,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
|
|||
| [LLaMA](https://github.com/facebookresearch/llama) | 7B/13B/33B/65B | q_proj,v_proj | - |
|
||||
| [LLaMA-2](https://huggingface.co/meta-llama) | 7B/13B/70B | q_proj,v_proj | llama2 |
|
||||
| [LLaMA-3](https://huggingface.co/meta-llama) | 8B/70B | q_proj,v_proj | llama3 |
|
||||
| [LLaVA-1.5](https://huggingface.co/llava-hf) | 7B/13B | q_proj,v_proj | vicuna |
|
||||
| [Mistral/Mixtral](https://huggingface.co/mistralai) | 7B/8x7B/8x22B | q_proj,v_proj | mistral |
|
||||
| [OLMo](https://huggingface.co/allenai) | 1B/7B | q_proj,v_proj | - |
|
||||
| [Phi-1.5/2](https://huggingface.co/microsoft) | 1.3B/2.7B | q_proj,v_proj | - |
|
||||
|
@ -457,7 +460,7 @@ export USE_MODELSCOPE_HUB=1 # Windows 使用 `set USE_MODELSCOPE_HUB=1`
|
|||
|
||||
本仓库的代码依照 [Apache-2.0](LICENSE) 协议开源。
|
||||
|
||||
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
使用模型权重时,请遵循对应的模型协议:[Baichuan2](https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/main/Community%20License%20for%20Baichuan%202%20Model.pdf) / [BLOOM](https://huggingface.co/spaces/bigscience/license) / [ChatGLM3](https://github.com/THUDM/ChatGLM3/blob/main/MODEL_LICENSE) / [Command-R](https://cohere.com/c4ai-cc-by-nc-license) / [DeepSeek](https://github.com/deepseek-ai/DeepSeek-LLM/blob/main/LICENSE-MODEL) / [Falcon](https://huggingface.co/tiiuae/falcon-180B/blob/main/LICENSE.txt) / [Gemma](https://ai.google.dev/gemma/terms) / [InternLM2](https://github.com/InternLM/InternLM#license) / [LLaMA](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) / [LLaMA-2/LLaVA-1.5](https://ai.meta.com/llama/license/) / [LLaMA-3](https://llama.meta.com/llama3/license/) / [Mistral](LICENSE) / [OLMo](LICENSE) / [Phi-1.5/2](https://huggingface.co/microsoft/phi-1_5/resolve/main/Research%20License.docx) / [Phi-3](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/blob/main/LICENSE) / [Qwen](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT) / [StarCoder2](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement) / [XVERSE](https://github.com/xverse-ai/XVERSE-13B/blob/main/MODEL_LICENSE.pdf) / [Yi](https://huggingface.co/01-ai/Yi-6B/blob/main/LICENSE) / [Yuan](https://github.com/IEIT-Yuan/Yuan-2.0/blob/main/LICENSE-Yuan)
|
||||
|
||||
## 引用
|
||||
|
||||
|
|
|
@ -44,8 +44,9 @@ def calculate_lr(
|
|||
overwrite_cache=True,
|
||||
)
|
||||
)
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
tokenizer = tokenizer_module["tokenizer"]
|
||||
trainset = get_dataset(model_args, data_args, training_args, stage, **tokenizer_module)
|
||||
if stage == "pt":
|
||||
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
||||
elif stage == "sft":
|
||||
|
|
|
@ -32,8 +32,8 @@ def length_cdf(
|
|||
overwrite_cache=True,
|
||||
)
|
||||
)
|
||||
tokenizer = load_tokenizer(model_args)
|
||||
trainset = get_dataset(tokenizer, model_args, data_args, training_args, stage="sft")
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
trainset = get_dataset(model_args, data_args, training_args, stage="sft", **tokenizer_module)
|
||||
total_num = len(trainset)
|
||||
length_dict = defaultdict(int)
|
||||
for sample in tqdm(trainset["input_ids"]):
|
||||
|
|
|
@ -320,6 +320,9 @@ def get_infer_args(args: Optional[Dict[str, Any]] = None) -> _INFER_CLS:
|
|||
if model_args.adapter_name_or_path is not None and len(model_args.adapter_name_or_path) != 1:
|
||||
raise ValueError("vLLM only accepts a single adapter. Merge them first.")
|
||||
|
||||
if model_args.visual_inputs:
|
||||
raise ValueError("vLLM engine does not support MLLM yet. Stay tuned.")
|
||||
|
||||
_verify_model_args(model_args, finetuning_args)
|
||||
_check_extra_dependencies(model_args, finetuning_args)
|
||||
|
||||
|
|
Loading…
Reference in New Issue