forked from p04798526/LLaMA-Factory-Mirror
set dev version
This commit is contained in:
parent
5aa4ce4756
commit
3ac11e77cc
|
@ -12,7 +12,7 @@ from transformers.utils import is_bitsandbytes_available, is_torch_cuda_availabl
|
|||
from .packages import is_vllm_available
|
||||
|
||||
|
||||
VERSION = "0.8.0"
|
||||
VERSION = "0.8.1.dev0"
|
||||
|
||||
|
||||
def print_env() -> None:
|
||||
|
|
|
@ -0,0 +1,72 @@
|
|||
import os
|
||||
|
||||
import torch
|
||||
|
||||
from llamafactory.hparams import get_train_args
|
||||
from llamafactory.model import load_model, load_tokenizer
|
||||
|
||||
|
||||
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-LlamaForCausalLM")
|
||||
|
||||
TRAINING_ARGS = {
|
||||
"model_name_or_path": TINY_LLAMA,
|
||||
"stage": "sft",
|
||||
"do_train": True,
|
||||
"finetuning_type": "lora",
|
||||
"dataset": "llamafactory/tiny_dataset",
|
||||
"dataset_dir": "ONLINE",
|
||||
"template": "llama3",
|
||||
"cutoff_len": 1024,
|
||||
"overwrite_cache": True,
|
||||
"output_dir": "dummy_dir",
|
||||
"overwrite_output_dir": True,
|
||||
"fp16": True,
|
||||
}
|
||||
|
||||
|
||||
def test_lora_all_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(
|
||||
{
|
||||
"lora_target": "all",
|
||||
**TRAINING_ARGS,
|
||||
}
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
linear_modules = set()
|
||||
for name, param in model.named_parameters():
|
||||
if any(module in name for module in ["lora_A", "lora_B"]):
|
||||
linear_modules.add(name.split(".lora_", maxsplit=1)[0].split(".")[-1])
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
else:
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
assert linear_modules == {"q_proj", "k_proj", "v_proj", "o_proj", "up_proj", "gate_proj", "down_proj"}
|
||||
|
||||
|
||||
def test_lora_extra_modules():
|
||||
model_args, _, _, finetuning_args, _ = get_train_args(
|
||||
{
|
||||
"lora_target": "all",
|
||||
"additional_target": "embed_tokens,lm_head",
|
||||
**TRAINING_ARGS,
|
||||
}
|
||||
)
|
||||
tokenizer_module = load_tokenizer(model_args)
|
||||
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
|
||||
extra_modules = set()
|
||||
for name, param in model.named_parameters():
|
||||
if any(module in name for module in ["lora_A", "lora_B"]):
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
elif "modules_to_save" in name:
|
||||
extra_modules.add(name.split(".modules_to_save", maxsplit=1)[0].split(".")[-1])
|
||||
assert param.requires_grad is True
|
||||
assert param.dtype == torch.float32
|
||||
else:
|
||||
assert param.requires_grad is False
|
||||
assert param.dtype == torch.float16
|
||||
|
||||
assert extra_modules == {"embed_tokens", "lm_head"}
|
Loading…
Reference in New Issue