forked from p04798526/LLaMA-Factory-Mirror
fix flashattn + packing
This commit is contained in:
parent
ad71296a7c
commit
4135e69406
|
@ -38,7 +38,7 @@ def _encode_feedback_example(
|
|||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
cutoff_len: int,
|
||||
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
@ -67,10 +67,10 @@ def _encode_feedback_example(
|
|||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
kl_prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + kl_prompt_ids
|
||||
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), data_args.cutoff_len)
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), len(response_ids), cutoff_len)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
response_ids = response_ids[:target_len]
|
||||
kl_source_len, kl_target_len = infer_seqlen(len(kl_prompt_ids), len(kl_response_ids), data_args.cutoff_len)
|
||||
kl_source_len, kl_target_len = infer_seqlen(len(kl_prompt_ids), len(kl_response_ids), cutoff_len)
|
||||
kl_prompt_ids = kl_prompt_ids[:kl_source_len]
|
||||
kl_response_ids = kl_response_ids[:kl_target_len]
|
||||
|
||||
|
@ -120,7 +120,7 @@ def preprocess_feedback_dataset(
|
|||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
cutoff_len=data_args.cutoff_len,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
|
|
|
@ -37,7 +37,7 @@ def _encode_pairwise_example(
|
|||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
cutoff_len: int,
|
||||
) -> Tuple[List[int], List[int], List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
@ -55,9 +55,8 @@ def _encode_pairwise_example(
|
|||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||
|
||||
source_len, target_len = infer_seqlen(
|
||||
len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), data_args.cutoff_len
|
||||
) # consider the response is more important
|
||||
# consider the response is more important
|
||||
source_len, target_len = infer_seqlen(len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), cutoff_len)
|
||||
prompt_ids = prompt_ids[:source_len]
|
||||
chosen_ids = chosen_ids[:target_len]
|
||||
rejected_ids = rejected_ids[:target_len]
|
||||
|
@ -105,7 +104,7 @@ def preprocess_pairwise_dataset(
|
|||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
cutoff_len=data_args.cutoff_len,
|
||||
)
|
||||
model_inputs["chosen_input_ids"].append(chosen_input_ids)
|
||||
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
|
||||
|
|
|
@ -38,7 +38,9 @@ def _encode_supervised_example(
|
|||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
cutoff_len: int,
|
||||
train_on_prompt: bool,
|
||||
mask_history: bool,
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
@ -54,22 +56,22 @@ def _encode_supervised_example(
|
|||
encoded_pairs = template.encode_multiturn(tokenizer, messages, system, tools)
|
||||
total_length = 1 if template.efficient_eos else 0
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs):
|
||||
if total_length >= data_args.cutoff_len:
|
||||
if total_length >= cutoff_len:
|
||||
break
|
||||
|
||||
source_len, target_len = infer_seqlen(len(source_ids), len(target_ids), data_args.cutoff_len - total_length)
|
||||
source_len, target_len = infer_seqlen(len(source_ids), len(target_ids), cutoff_len - total_length)
|
||||
source_ids = source_ids[:source_len]
|
||||
target_ids = target_ids[:target_len]
|
||||
total_length += source_len + target_len
|
||||
|
||||
if data_args.train_on_prompt:
|
||||
if train_on_prompt:
|
||||
source_label = source_ids
|
||||
elif turn_idx != 0 and template.efficient_eos:
|
||||
source_label = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (source_len - 1)
|
||||
else:
|
||||
source_label = [IGNORE_INDEX] * source_len
|
||||
|
||||
if data_args.mask_history and turn_idx != len(encoded_pairs) - 1:
|
||||
if mask_history and turn_idx != len(encoded_pairs) - 1:
|
||||
target_label = [IGNORE_INDEX] * target_len
|
||||
else:
|
||||
target_label = target_ids
|
||||
|
@ -112,7 +114,9 @@ def preprocess_supervised_dataset(
|
|||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
cutoff_len=data_args.cutoff_len,
|
||||
train_on_prompt=data_args.train_on_prompt,
|
||||
mask_history=data_args.mask_history,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
|
@ -150,7 +154,9 @@ def preprocess_packed_supervised_dataset(
|
|||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=None,
|
||||
data_args=data_args,
|
||||
cutoff_len=data_args.cutoff_len - 1, # reserved for the padding token
|
||||
train_on_prompt=data_args.train_on_prompt,
|
||||
mask_history=data_args.mask_history,
|
||||
)
|
||||
length = len(input_ids)
|
||||
if length > data_args.cutoff_len:
|
||||
|
@ -163,7 +169,7 @@ def preprocess_packed_supervised_dataset(
|
|||
valid_num += 1
|
||||
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len)
|
||||
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len - 1) # reserved for the padding token
|
||||
for knapsack in knapsacks:
|
||||
packed_input_ids, packed_attention_masks, packed_labels = [], [], []
|
||||
for i, length in enumerate(knapsack):
|
||||
|
|
|
@ -37,7 +37,7 @@ def _encode_unsupervised_example(
|
|||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
cutoff_len: int,
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
@ -55,7 +55,7 @@ def _encode_unsupervised_example(
|
|||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids
|
||||
|
||||
source_len, target_len = infer_seqlen(len(input_ids), len(labels), data_args.cutoff_len)
|
||||
source_len, target_len = infer_seqlen(len(input_ids), len(labels), cutoff_len)
|
||||
input_ids = input_ids[:source_len]
|
||||
labels = labels[:target_len]
|
||||
return input_ids, labels
|
||||
|
@ -88,7 +88,7 @@ def preprocess_unsupervised_dataset(
|
|||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
cutoff_len=data_args.cutoff_len,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
|
|
Loading…
Reference in New Issue