forked from p04798526/LLaMA-Factory-Mirror
fix ppo trainer save zero3 model
accelerator.get_state_dict(ds_model) should be called at all ranks
This commit is contained in:
parent
2702d7e952
commit
4489d73ac7
|
@ -123,9 +123,8 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||
|
||||
self.state = TrainerState()
|
||||
self.control = TrainerControl()
|
||||
self.is_deepspeed_enabled = self.accelerator.distributed_type == "DEEPSPEED" and hasattr(
|
||||
self.accelerator.state, "deepspeed_plugin"
|
||||
)
|
||||
self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
|
||||
self.is_fsdp_enabled = getattr(self.accelerator.state, "fsdp_plugin", None) is not None
|
||||
self.log_callback, self.save_callback = callbacks[0], callbacks[1]
|
||||
assert isinstance(self.log_callback, LogCallback) and isinstance(self.save_callback, FixValueHeadModelCallback)
|
||||
|
||||
|
@ -466,18 +465,28 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||
|
||||
Subclass and override to inject custom behavior.
|
||||
"""
|
||||
if self.args.should_save:
|
||||
if output_dir is None:
|
||||
output_dir = self.args.output_dir
|
||||
|
||||
if self.is_fsdp_enabled or self.is_deepspeed_enabled:
|
||||
try:
|
||||
self._save(output_dir, state_dict=self.accelerator.get_state_dict(self.model))
|
||||
state_dict = self.accelerator.get_state_dict(self.model) # must be called at all ranks
|
||||
if self.args.should_save:
|
||||
self._save(output_dir, state_dict=state_dict)
|
||||
except ValueError:
|
||||
logger.warning(
|
||||
" stage3_gather_16bit_weights_on_model_save=false. Saving the full checkpoint instead,"
|
||||
" use zero_to_fp32.py to recover weights"
|
||||
)
|
||||
self._save(output_dir, state_dict={})
|
||||
remove_dummy_checkpoint(True, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
|
||||
if self.args.should_save:
|
||||
self._save(output_dir, state_dict={})
|
||||
# remove the dummy state_dict
|
||||
remove_dummy_checkpoint(self.args.should_save, output_dir, [WEIGHTS_NAME, SAFE_WEIGHTS_NAME])
|
||||
self.model.save_checkpoint(output_dir)
|
||||
|
||||
if self.processor is not None:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
elif self.args.should_save:
|
||||
self._save(output_dir)
|
||||
|
||||
if self.processor is not None and self.args.should_save:
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
getattr(self.processor, "image_processor").save_pretrained(output_dir)
|
||||
|
|
|
@ -10,12 +10,15 @@ from ...extras.packages import is_jieba_available, is_nltk_available, is_rouge_a
|
|||
if TYPE_CHECKING:
|
||||
from transformers.tokenization_utils import PreTrainedTokenizer
|
||||
|
||||
|
||||
if is_jieba_available():
|
||||
import jieba # type: ignore
|
||||
|
||||
|
||||
if is_nltk_available():
|
||||
from nltk.translate.bleu_score import SmoothingFunction, sentence_bleu
|
||||
|
||||
|
||||
if is_rouge_available():
|
||||
from rouge_chinese import Rouge
|
||||
|
||||
|
|
Loading…
Reference in New Issue