add CMMLU, update eval script

This commit is contained in:
hiyouga 2023-09-23 21:10:17 +08:00
parent f8ff625d76
commit 4dd9b4d982
7 changed files with 507 additions and 61 deletions

View File

@ -14,7 +14,7 @@
## Changelog
[23/09/23] We integrated MMLU and C-Eval benchmarks in this repo. See [this example](#evaluation-mmlu--c-eval) to evaluate your models.
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
[23/09/10] We supported using **[FlashAttention](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
@ -371,7 +371,8 @@ python src/export_model.py \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
--output_dir path_to_export \
--fp16
```
### API Demo
@ -407,7 +408,22 @@ python src/web_demo.py \
--checkpoint_dir path_to_checkpoint
```
### Evaluation and Predict (BLEU & ROUGE_CHINESE)
### Evaluation
```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--template vanilla \
--task mmlu \
--split test \
--lang en \
--n_shot 5 \
--batch_size 4
```
### Predict
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
@ -425,22 +441,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```
> [!NOTE]
> We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation.
### Evaluation (MMLU & C-Eval)
```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--template vanilla \
--task mmlu \
--split test \
--lang en \
--n_shot 5 \
--batch_size 4
```
> We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit predict.
## License

View File

@ -14,7 +14,7 @@
## 更新日志
[23/09/23] 我们在项目中集成了 MMLU 和 C-Eval 评估集。使用方法请参阅[此示例](#模型评估mmlu-和-c-eval)。
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
[23/09/10] 我们支持了 LLaMA 模型的 **[FlashAttention](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU请使用 `--flash_attn` 参数以启用 FlashAttention-2实验性功能
@ -370,7 +370,8 @@ python src/export_model.py \
--template default \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--output_dir path_to_export
--output_dir path_to_export \
--fp16
```
### API 服务
@ -406,7 +407,22 @@ python src/web_demo.py \
--checkpoint_dir path_to_checkpoint
```
### 指标评估与模型预测BLEU 分数和汉语 ROUGE 分数)
### 模型评估
```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--template vanilla \
--task ceval \
--split validation \
--lang zh \
--n_shot 5 \
--batch_size 4
```
### 模型预测
```bash
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
@ -424,22 +440,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
```
> [!NOTE]
> 我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1``--max_target_length 128`
### 模型评估MMLU 和 C-Eval
```bash
CUDA_VISIBLE_DEVICES=0 python src/evaluate.py \
--model_name_or_path path_to_llama_model \
--finetuning_type lora \
--checkpoint_dir path_to_checkpoint \
--template vanilla \
--task ceval \
--split validation \
--lang zh \
--n_shot 5 \
--batch_size 4
```
> 我们建议在量化模型的预测中使用 `--per_device_eval_batch_size=1``--max_target_length 128`
## 协议

View File

@ -92,14 +92,14 @@ task_list = [
]
class CevalExamConfig(datasets.BuilderConfig):
class CevalConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
class CevalExam(datasets.GeneratorBasedBuilder):
class Ceval(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CevalExamConfig(
CevalConfig(
name=task_name,
)
for task_name in task_list

163
evaluation/cmmlu/cmmlu.py Normal file
View File

@ -0,0 +1,163 @@
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import datasets
import pandas as pd
_CITATION = """\
@article{li2023cmmlu,
title={CMMLU: Measuring massive multitask language understanding in Chinese},
author={Haonan Li and Yixuan Zhang and Fajri Koto and Yifei Yang and Hai Zhao and Yeyun Gong and Nan Duan and Timothy Baldwin},
journal={arXiv preprint arXiv:2306.09212},
year={2023}
}
"""
_DESCRIPTION = """\
CMMLU is a comprehensive Chinese assessment suite specifically designed to evaluate the advanced knowledge and reasoning abilities of LLMs within the Chinese language and cultural context.
"""
_HOMEPAGE = "https://github.com/haonan-li/CMMLU"
_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
_URL = "cmmlu.zip"
task_list = [
'agronomy',
'anatomy',
'ancient_chinese',
'arts',
'astronomy',
'business_ethics',
'chinese_civil_service_exam',
'chinese_driving_rule',
'chinese_food_culture',
'chinese_foreign_policy',
'chinese_history',
'chinese_literature',
'chinese_teacher_qualification',
'clinical_knowledge',
'college_actuarial_science',
'college_education',
'college_engineering_hydrology',
'college_law',
'college_mathematics',
'college_medical_statistics',
'college_medicine',
'computer_science',
'computer_security',
'conceptual_physics',
'construction_project_management',
'economics',
'education',
'electrical_engineering',
'elementary_chinese',
'elementary_commonsense',
'elementary_information_and_technology',
'elementary_mathematics',
'ethnology',
'food_science',
'genetics',
'global_facts',
'high_school_biology',
'high_school_chemistry',
'high_school_geography',
'high_school_mathematics',
'high_school_physics',
'high_school_politics',
'human_sexuality',
'international_law',
'journalism',
'jurisprudence',
'legal_and_moral_basis',
'logical',
'machine_learning',
'management',
'marketing',
'marxist_theory',
'modern_chinese',
'nutrition',
'philosophy',
'professional_accounting',
'professional_law',
'professional_medicine',
'professional_psychology',
'public_relations',
'security_study',
'sociology',
'sports_science',
'traditional_chinese_medicine',
'virology',
'world_history',
'world_religions',
]
class CMMLUConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.1"), **kwargs)
class CMMLU(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
CMMLUConfig(
name=task_name,
)
for task_name in task_list
]
def _info(self):
features = datasets.Features(
{
"question": datasets.Value("string"),
"A": datasets.Value("string"),
"B": datasets.Value("string"),
"C": datasets.Value("string"),
"D": datasets.Value("string"),
"answer": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL)
task_name = self.config.name
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(data_dir, f"test/{task_name}.csv"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(data_dir, f"dev/{task_name}.csv"),
},
),
]
def _generate_examples(self, filepath):
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8")
for i, instance in enumerate(df.to_dict(orient="records")):
yield i, instance

BIN
evaluation/cmmlu/cmmlu.zip Normal file

Binary file not shown.

View File

@ -0,0 +1,270 @@
{
"agronomy": {
"name": "农学",
"category": "Other"
},
"anatomy": {
"name": "解剖学",
"category": "STEM"
},
"ancient_chinese": {
"name": "古汉语",
"category": "Social Sciences"
},
"arts": {
"name": "艺术学",
"category": "Humanities"
},
"astronomy": {
"name": "天文学",
"category": "STEM"
},
"business_ethics": {
"name": "商业伦理",
"category": "Social Sciences"
},
"chinese_civil_service_exam": {
"name": "中国公务员考试",
"category": "Social Sciences"
},
"chinese_driving_rule": {
"name": "中国驾驶规则",
"category": "Other"
},
"chinese_food_culture": {
"name": "中国饮食文化",
"category": "Social Sciences"
},
"chinese_foreign_policy": {
"name": "中国外交政策",
"category": "Social Sciences"
},
"chinese_history": {
"name": "中国历史",
"category": "Humanities"
},
"chinese_literature": {
"name": "中国文学",
"category": "Humanities"
},
"chinese_teacher_qualification": {
"name": "中国教师资格",
"category": "Social Sciences"
},
"college_actuarial_science": {
"name": "大学精算学",
"category": "STEM"
},
"college_education": {
"name": "大学教育学",
"category": "Social Sciences"
},
"college_engineering_hydrology": {
"name": "大学工程水文学",
"category": "STEM"
},
"college_law": {
"name": "大学法律",
"category": "Humanities"
},
"college_mathematics": {
"name": "大学数学",
"category": "STEM"
},
"college_medical_statistics": {
"name": "大学医学统计",
"category": "STEM"
},
"clinical_knowledge": {
"name": "临床知识",
"category": "Other"
},
"college_medicine": {
"name": "大学医学",
"category": "Other"
},
"computer_science": {
"name": "计算机科学",
"category": "STEM"
},
"computer_security": {
"name": "计算机安全",
"category": "Other"
},
"conceptual_physics": {
"name": "概念物理学",
"category": "STEM"
},
"construction_project_management": {
"name": "建设工程管理",
"category": "Other"
},
"economics": {
"name": "经济学",
"category": "Social Sciences"
},
"education": {
"name": "教育学",
"category": "Social Sciences"
},
"elementary_chinese": {
"name": "小学语文",
"category": "Social Sciences"
},
"elementary_commonsense": {
"name": "小学常识",
"category": "Other"
},
"elementary_information_and_technology": {
"name": "小学信息技术",
"category": "Other"
},
"electrical_engineering": {
"name": "电气工程",
"category": "STEM"
},
"elementary_mathematics": {
"name": "初等数学",
"category": "STEM"
},
"ethnology": {
"name": "民族学",
"category": "Social Sciences"
},
"food_science": {
"name": "食品科学",
"category": "Other"
},
"genetics": {
"name": "遗传学",
"category": "STEM"
},
"global_facts": {
"name": "全球事实",
"category": "Humanities"
},
"high_school_biology": {
"name": "高中生物",
"category": "STEM"
},
"high_school_chemistry": {
"name": "高中化学",
"category": "STEM"
},
"high_school_geography": {
"name": "高中地理",
"category": "Social Sciences"
},
"high_school_mathematics": {
"name": "高中数学",
"category": "STEM"
},
"high_school_physics": {
"name": "高中物理学",
"category": "STEM"
},
"high_school_politics": {
"name": "高中政治",
"category": "Social Sciences"
},
"human_sexuality": {
"name": "人类性行为",
"category": "Other"
},
"international_law": {
"name": "国际法学",
"category": "Humanities"
},
"journalism": {
"name": "新闻学",
"category": "Social Sciences"
},
"jurisprudence": {
"name": "法理学",
"category": "Humanities"
},
"legal_and_moral_basis": {
"name": "法律与道德基础",
"category": "Other"
},
"logical": {
"name": "逻辑学",
"category": "Humanities"
},
"machine_learning": {
"name": "机器学习",
"category": "STEM"
},
"management": {
"name": "管理学",
"category": "Social Sciences"
},
"marketing": {
"name": "市场营销",
"category": "Social Sciences"
},
"marxist_theory": {
"name": "马克思主义理论",
"category": "Humanities"
},
"modern_chinese": {
"name": "现代汉语",
"category": "Social Sciences"
},
"nutrition": {
"name": "营养学",
"category": "Other"
},
"philosophy": {
"name": "哲学",
"category": "Humanities"
},
"professional_accounting": {
"name": "专业会计",
"category": "Social Sciences"
},
"professional_law": {
"name": "专业法学",
"category": "Humanities"
},
"professional_medicine": {
"name": "专业医学",
"category": "Other"
},
"professional_psychology": {
"name": "专业心理学",
"category": "Social Sciences"
},
"public_relations": {
"name": "公共关系",
"category": "Social Sciences"
},
"security_study": {
"name": "安全研究",
"category": "Social Sciences"
},
"sociology": {
"name": "社会学",
"category": "Social Sciences"
},
"sports_science": {
"name": "体育学",
"category": "Other"
},
"traditional_chinese_medicine": {
"name": "中医中药",
"category": "Other"
},
"virology": {
"name": "病毒学",
"category": "STEM"
},
"world_history": {
"name": "世界历史",
"category": "Humanities"
},
"world_religions": {
"name": "世界宗教",
"category": "Humanities"
}
}

View File

@ -1,16 +1,15 @@
# coding=utf-8
# Evaluates the performance of pre-trained models.
# Usage: python evaluate.py --model_name_or_path path_to_model --checkpoint_dir path_to_ckpt --template vanilla
# --task ceval --split validation --lang zh --n_shot 5 --batch_size 4
# --task ceval --split validation --lang zh --n_shot 5 --batch_size 4 --save_name result
# Inspired by: https://github.com/hendrycks/test/blob/master/evaluate_flan.py
import os
import fire
import json
import torch
import random
import numpy as np
from tqdm import tqdm
from tqdm import tqdm, trange
from typing import TYPE_CHECKING, Dict, List, Literal, Optional, Tuple
from datasets import load_dataset
from dataclasses import dataclass
@ -30,6 +29,7 @@ class EvalTemplate:
system: str
choice: str
answer: str
prefix: str
def parse_example(
self,
@ -49,7 +49,6 @@ class EvalTemplate:
history = [self.parse_example(support_set[k]) for k in range(len(support_set))]
if len(history):
random.shuffle(history)
temp = history.pop(0)
history.insert(0, (self.system.format(subject=subject_name) + temp[0], temp[1]))
else:
@ -65,12 +64,14 @@ eval_templates = {
"en": EvalTemplate(
system="The following are multiple choice questions (with answers) about {subject}.\n\n",
choice="\n{choice}. {content}",
answer="\nAnswer: "
answer="\nAnswer: ",
prefix=" "
),
"zh": EvalTemplate(
system="以下是中国关于{subject}考试的单项选择题,请选出其中的正确答案。\n\n",
choice="\n{choice}. {content}",
answer="\n答案:"
answer="\n答案:",
prefix="\n"
)
}
@ -79,9 +80,8 @@ eval_templates = {
def batch_inference(
chat_model: ChatModel,
batch_input: Dict[str, torch.Tensor],
lang: Literal["zh", "en"]
prefix_char: str
) -> List[str]:
prefix_char = "\n" if lang == "zh" else " "
logits = chat_model.model(**batch_input).logits
probs = torch.nn.functional.softmax(
torch.stack(
@ -108,7 +108,8 @@ def evaluate(
split: Optional[Literal["validation", "test"]] = "validation",
lang: Optional[Literal["zh", "en"]] = "zh",
n_shot: Optional[int] = 5,
batch_size: Optional[int] = 4
batch_size: Optional[int] = 4,
save_name: Optional[str] = None
):
with open(os.path.join(dataset_dir, task, "mapping.json"), "r", encoding="utf-8") as f:
categorys = json.load(f)
@ -119,25 +120,25 @@ def evaluate(
checkpoint_dir=checkpoint_dir,
template=template
))
chat_model.tokenizer.padding_side = "left"
eval_template = eval_templates[lang]
assert chat_model.tokenizer.padding_side == "left", "only left-padded tensor can be accepted."
category_corrects: Dict[str, np.ndarray] = {
"STEM": np.array([], dtype="bool"),
"Social Sciences": np.array([], dtype="bool"),
"Humanities": np.array([], dtype="bool"),
"Other": np.array([], dtype="bool")
subj: np.array([], dtype="bool") for subj in ["STEM", "Social Sciences", "Humanities", "Other"]
}
overall_corrects = np.array([], dtype="bool")
pbar = tqdm(categorys.keys())
pbar = tqdm(categorys.keys(), desc="Processing subjects", position=0)
results = {}
for subject in pbar:
pbar.set_postfix_str(categorys[subject]["name"])
inputs, labels = [], []
dataset = load_dataset(os.path.join(dataset_dir, task), subject)
for i in range(len(dataset[split])):
support_set = dataset["train"].shuffle().select(range(min(n_shot, len(dataset["train"]))))
query, resp, history = eval_template.format_example(
target_data=dataset[split][i],
support_set=dataset["train"].select(range(min(n_shot, len(dataset["train"])))),
support_set=support_set,
subject_name=categorys[subject]["name"],
use_history=chat_model.template.use_history
)
@ -154,23 +155,33 @@ def evaluate(
labels.append(resp)
outputs = []
for i in range(0, len(inputs), batch_size):
for i in trange(0, len(inputs), batch_size, desc="Processing batches", position=1, leave=False):
batch_input = chat_model.tokenizer.pad(
inputs[i : i + batch_size],
return_attention_mask=True,
return_tensors="pt"
).to(chat_model.model.device)
preds = batch_inference(chat_model, batch_input, lang)
preds = batch_inference(chat_model, batch_input, eval_template.prefix)
outputs += preds
corrects = (np.array(outputs) == np.array(labels))
category_name = categorys[subject]["category"]
category_corrects[category_name] = np.concatenate([category_corrects[category_name], corrects], axis=0)
overall_corrects = np.concatenate([overall_corrects, corrects], axis=0)
results[subject] = {str(i): outputs[i] for i in range(len(outputs))}
print("Average accuracy: {:.2f}".format(100 * np.mean(overall_corrects)))
score_info = "Average accuracy: {:.2f}".format(100 * np.mean(overall_corrects))
for category_name, category_correct in category_corrects.items():
print(" {} - {:.2f}".format(category_name, 100 * np.mean(category_correct)))
if len(category_correct):
score_info += "\n{:>16}: {:.2f}".format(category_name, 100 * np.mean(category_correct))
print(score_info)
if save_name is not None:
with open(save_name + ".json", "w", encoding="utf-8", newline="\n") as f:
json.dump(results, f, indent=2)
with open(save_name + ".log", "w", encoding="utf-8", newline="\n") as f:
f.write(score_info)
if __name__ == "__main__":