forked from p04798526/LLaMA-Factory-Mirror
Update evaluate.py
This commit is contained in:
parent
5a0a9daf74
commit
4f3772b342
|
@ -1,6 +1,7 @@
|
|||
# coding=utf-8
|
||||
# Evaluates fine-tuned models automatically.
|
||||
# Usage: python evaluate.py --evalset ceval/ceval-exam:law --split dev --api_base http://localhost:8000/v1 --task_type choice
|
||||
# dataset format: question (string), A (string), B (string), C (string), D (string), answer Literal["A", "B", "C", "D"]
|
||||
|
||||
|
||||
import os
|
||||
|
@ -12,13 +13,6 @@ from typing import Literal, Optional
|
|||
from datasets import load_dataset
|
||||
|
||||
|
||||
EXT2TYPE = {
|
||||
"csv": "csv",
|
||||
"json": "json",
|
||||
"jsonl": "json"
|
||||
}
|
||||
|
||||
|
||||
def format_example_choice(examples):
|
||||
model_inputs = {"query": [], "label": []}
|
||||
task_template = "请从ABCD四个选项中选出正确的选项,仅输出选项序号。\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n答案:"
|
||||
|
@ -53,9 +47,28 @@ def format_example_cloze(examples):
|
|||
return model_inputs
|
||||
|
||||
|
||||
def format_example_openqa(examples):
|
||||
model_inputs = {"query": [], "label": []}
|
||||
task_template = "回答以下问题:{question}\n答案:"
|
||||
for i in range(len(examples["id"])):
|
||||
query = task_template.format(question=examples["question"][i])
|
||||
label = examples[examples["answer"][i]][i]
|
||||
model_inputs["query"].append(query)
|
||||
model_inputs["label"].append(label)
|
||||
return model_inputs
|
||||
|
||||
|
||||
TASK_DICT = {
|
||||
"choice": format_example_choice,
|
||||
"cloze": format_example_cloze
|
||||
"cloze": format_example_cloze,
|
||||
"openqa": format_example_openqa
|
||||
}
|
||||
|
||||
|
||||
EXT2TYPE = {
|
||||
"csv": "csv",
|
||||
"json": "json",
|
||||
"jsonl": "json"
|
||||
}
|
||||
|
||||
|
||||
|
@ -63,7 +76,7 @@ def evaluate(
|
|||
evalset: str,
|
||||
api_base: str,
|
||||
split: Optional[str] = "val",
|
||||
task_type: Optional[Literal["choice", "cloze"]] = "choice",
|
||||
task_type: Optional[Literal["choice", "cloze", "openqa"]] = "choice",
|
||||
n_samples: Optional[int] = 20
|
||||
):
|
||||
|
||||
|
@ -72,12 +85,11 @@ def evaluate(
|
|||
|
||||
if os.path.isfile(evalset):
|
||||
dataset = load_dataset(EXT2TYPE[evalset.split(".")[-1]], data_files=evalset)["train"]
|
||||
elif ":" in evalset:
|
||||
evalset, subset = evalset.split(":")
|
||||
dataset = load_dataset(evalset, subset, split=split)
|
||||
else:
|
||||
if ":" in evalset:
|
||||
evalset, subset = evalset.split(":")
|
||||
dataset = load_dataset(evalset, subset, split=split)
|
||||
else:
|
||||
dataset = load_dataset(evalset, split=split)
|
||||
dataset = load_dataset(evalset, split=split)
|
||||
|
||||
n_samples = min(len(dataset), n_samples)
|
||||
|
||||
|
@ -87,12 +99,12 @@ def evaluate(
|
|||
n_correct = 0
|
||||
predictions = []
|
||||
for example in tqdm(dataset):
|
||||
query = example["query"]
|
||||
label = example["label"]
|
||||
query, label = example["query"], example["label"]
|
||||
predict = openai.ChatCompletion.create(
|
||||
model="main",
|
||||
model="default",
|
||||
messages=[{"role": "user", "content": query}],
|
||||
temperature=0.01,
|
||||
top_p=0.01,
|
||||
max_new_tokens=20
|
||||
).choices[0].message.content
|
||||
|
||||
|
@ -100,6 +112,8 @@ def evaluate(
|
|||
n_correct += 1
|
||||
if task_type == "cloze" and label in [predict[:len(label)], predict[-len(label):]]:
|
||||
n_correct += 1
|
||||
if task_type == "openqa" and label in predict:
|
||||
n_correct += 1
|
||||
|
||||
predictions.append({
|
||||
"query": query,
|
||||
|
|
Loading…
Reference in New Issue