From 63611de7ae09cd9578fcb9c6408035ec6bfb2cb2 Mon Sep 17 00:00:00 2001 From: hiyouga Date: Sun, 10 Sep 2023 21:01:20 +0800 Subject: [PATCH] update readme --- README.md | 15 ++++++++------- README_zh.md | 15 ++++++++------- 2 files changed, 16 insertions(+), 14 deletions(-) diff --git a/README.md b/README.md index 2089f51b..4fa7db19 100644 --- a/README.md +++ b/README.md @@ -64,7 +64,7 @@ | [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | xverse | | [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | 6B | query_key_value | chatglm2 | -> **Note** +> [!NOTE] > **Default module** is used for the `--lora_target` argument, you can use `--lora_target all` to specify all the available modules. > > For the "base" models, the `--template` argument can be chosen from `default`, `alpaca`, `vicuna` etc. But make sure to use the corresponding template for the "chat" models. @@ -79,7 +79,7 @@ | PPO Training | | | :white_check_mark: | :white_check_mark: | | DPO Training | :white_check_mark: | | :white_check_mark: | :white_check_mark: | -> **Note** +> [!NOTE] > Use `--quantization_bit 4/8` argument to enable QLoRA. ## Provided Datasets @@ -143,7 +143,7 @@ And **powerful GPUs**! Please refer to `data/example_dataset` for checking the details about the format of dataset files. You can either use a single `.json` file or a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) with multiple files to create a custom dataset. -> **Note** +> [!NOTE] > Please update `data/dataset_info.json` to use your custom dataset. About the format of this file, please refer to `data/README.md`. ### Dependence Installation (optional) @@ -170,12 +170,12 @@ CUDA_VISIBLE_DEVICES=0 python src/train_web.py We strongly recommend using the all-in-one Web UI for newcomers since it can also generate training scripts **automatically**. -> **Warning** +> [!WARNING] > Currently the web UI only supports training on **a single GPU**. ### Train on a single GPU -> **Warning** +> [!IMPORTANT] > If you want to train models on multiple GPUs, please refer to [Distributed Training](#distributed-training). #### Pre-Training @@ -344,6 +344,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \ ```json { + "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", @@ -391,7 +392,7 @@ python src/api_demo.py \ --checkpoint_dir path_to_checkpoint ``` -> **Note** +> [!NOTE] > Visit `http://localhost:8000/docs` for API documentation. ### CLI Demo @@ -431,7 +432,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --predict_with_generate ``` -> **Note** +> [!NOTE] > We recommend using `--per_device_eval_batch_size=1` and `--max_target_length 128` at 4/8-bit evaluation. ### Predict diff --git a/README_zh.md b/README_zh.md index 423a7fce..c7b851d1 100644 --- a/README_zh.md +++ b/README_zh.md @@ -64,7 +64,7 @@ | [XVERSE](https://github.com/xverse-ai/XVERSE-13B) | 13B | q_proj,v_proj | xverse | | [ChatGLM2](https://github.com/THUDM/ChatGLM2-6B) | 6B | query_key_value | chatglm2 | -> **Note** +> [!NOTE] > **默认模块**应作为 `--lora_target` 参数的默认值,可使用 `--lora_target all` 参数指定全部模块。 > > 对于所有“基座”(Base)模型,`--template` 参数可以是 `default`, `alpaca`, `vicuna` 等任意值。但“对话”(Chat)模型请务必使用对应的模板。 @@ -79,7 +79,7 @@ | PPO 训练 | | | :white_check_mark: | :white_check_mark: | | DPO 训练 | :white_check_mark: | | :white_check_mark: | :white_check_mark: | -> **Note** +> [!NOTE] > 请使用 `--quantization_bit 4/8` 参数来启用 QLoRA 训练。 ## 数据集 @@ -143,7 +143,7 @@ huggingface-cli login 关于数据集文件的格式,请参考 `data/example_dataset` 文件夹的内容。构建自定义数据集时,既可以使用单个 `.json` 文件,也可以使用一个[数据加载脚本](https://huggingface.co/docs/datasets/dataset_script)和多个文件。 -> **Note** +> [!NOTE] > 使用自定义数据集时,请更新 `data/dataset_info.json` 文件,该文件的格式请参考 `data/README.md`。 ### 环境搭建(可跳过) @@ -170,12 +170,12 @@ CUDA_VISIBLE_DEVICES=0 python src/train_web.py 我们极力推荐新手使用浏览器一体化界面,因为它还可以**自动**生成运行所需的命令行脚本。 -> **Warning** +> [!WARNING] > 目前网页 UI 仅支持**单卡训练**。 ### 单 GPU 训练 -> **Warning** +> [!IMPORTANT] > 如果您使用多张 GPU 训练模型,请移步[多 GPU 分布式训练](#多-gpu-分布式训练)部分。 #### 预训练 @@ -343,6 +343,7 @@ deepspeed --num_gpus 8 --master_port=9901 src/train_bash.py \ ```json { + "train_batch_size": "auto", "train_micro_batch_size_per_gpu": "auto", "gradient_accumulation_steps": "auto", "gradient_clipping": "auto", @@ -390,7 +391,7 @@ python src/api_demo.py \ --checkpoint_dir path_to_checkpoint ``` -> **Note** +> [!NOTE] > 关于 API 文档请见 `http://localhost:8000/docs`。 ### 命令行测试 @@ -430,7 +431,7 @@ CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \ --predict_with_generate ``` -> **Note** +> [!NOTE] > 我们建议在量化模型的评估中使用 `--per_device_eval_batch_size=1` 和 `--max_target_length 128`。 ### 模型预测