forked from p04798526/LLaMA-Factory-Mirror
remove rlhf support for chatglm2&3
This commit is contained in:
parent
c13ae2df19
commit
821bb6660e
|
@ -150,14 +150,10 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||
self.callback_handler = CallbackHandler(
|
||||
callbacks, self.accelerator.unwrap_model(self.model), self.tokenizer, self.optimizer, self.lr_scheduler
|
||||
)
|
||||
|
||||
if self.args.max_steps > 0:
|
||||
logger.info("max_steps is given, it will override any value given in num_train_epochs")
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
self.is_chatglm_model = getattr(unwrapped_model.config, "model_type", None) == "chatglm"
|
||||
|
||||
self.amp_context = torch.autocast(self.current_device.type, dtype=self.model_args.compute_dtype)
|
||||
self.amp_context = torch.autocast(self.current_device.type)
|
||||
warnings.simplefilter("ignore") # remove gc warnings on ref model
|
||||
|
||||
if finetuning_args.reward_model_type == "full":
|
||||
|
@ -403,9 +399,6 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||
if self.finetuning_args.reward_model_type == "lora":
|
||||
replace_model(unwrapped_model, target="default")
|
||||
|
||||
if self.is_chatglm_model: # assume same architecture
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
rewards = values.gather(dim=-1, index=(batch["attention_mask"].sum(dim=-1, keepdim=True) - 1))
|
||||
return rewards.float().detach() # use fp32 type
|
||||
|
||||
|
@ -443,9 +436,6 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
|
|||
with self.amp_context: # support bf16
|
||||
logits, _, values = model(**input_kwargs, return_dict=True, use_cache=False)
|
||||
|
||||
if self.is_chatglm_model:
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
logprobs = logprobs_from_logits(logits[:, :-1, :], input_ids[:, 1:])
|
||||
masks = torch.zeros_like(attention_mask)
|
||||
masks[:, :-1] = attention_mask[:, 1:]
|
||||
|
|
|
@ -31,7 +31,6 @@ from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
|
|||
if TYPE_CHECKING:
|
||||
from transformers import PreTrainedModel, ProcessorMixin
|
||||
from transformers.trainer import PredictionOutput
|
||||
from trl import AutoModelForCausalLMWithValueHead
|
||||
|
||||
from ...hparams import FinetuningArguments
|
||||
|
||||
|
@ -86,19 +85,14 @@ class PairwiseTrainer(Trainer):
|
|||
Note that the first element will be removed from the output tuple.
|
||||
See: https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer.py#L3842
|
||||
"""
|
||||
# Compute rewards
|
||||
_, _, values = model(**inputs, output_hidden_states=True, return_dict=True, use_cache=False)
|
||||
|
||||
unwrapped_model: "AutoModelForCausalLMWithValueHead" = self.accelerator.unwrap_model(self.model)
|
||||
if getattr(unwrapped_model.config, "model_type", None) == "chatglm":
|
||||
values = torch.transpose(values, 0, 1)
|
||||
|
||||
batch_size = inputs["input_ids"].size(0) // 2
|
||||
chosen_masks, rejected_masks = torch.split(inputs["attention_mask"], batch_size, dim=0)
|
||||
chosen_rewards, rejected_rewards = torch.split(values, batch_size, dim=0)
|
||||
chosen_scores = chosen_rewards.gather(dim=-1, index=(chosen_masks.sum(dim=-1, keepdim=True) - 1))
|
||||
rejected_scores = rejected_rewards.gather(dim=-1, index=(rejected_masks.sum(dim=-1, keepdim=True) - 1))
|
||||
chosen_scores, rejected_scores = chosen_scores.squeeze(), rejected_scores.squeeze()
|
||||
|
||||
loss = -torch.nn.functional.logsigmoid(chosen_scores.float() - rejected_scores.float()).mean()
|
||||
if return_outputs:
|
||||
return loss, (loss, chosen_scores, rejected_scores)
|
||||
|
|
Loading…
Reference in New Issue