update scripts

This commit is contained in:
hiyouga 2024-08-09 19:16:23 +08:00
parent c87023d539
commit 86f7099fa3
8 changed files with 29 additions and 16 deletions

View File

@ -537,9 +537,10 @@ docker exec -it llamafactory bash
<details><summary>Details about volume</summary>
- hf_cache: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
- data: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
- output: Set export dir to this location so that the merged result can be accessed directly on the host machine.
- `hf_cache`: Utilize Hugging Face cache on the host machine. Reassignable if a cache already exists in a different directory.
- `ms_cache`: Similar to Hugging Face cache but for ModelScope users.
- `data`: Place datasets on this dir of the host machine so that they can be selected on LLaMA Board GUI.
- `output`: Set export dir to this location so that the merged result can be accessed directly on the host machine.
</details>

View File

@ -537,9 +537,10 @@ docker exec -it llamafactory bash
<details><summary>数据卷详情</summary>
- hf_cache使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
- data宿主机中存放数据集的文件夹路径。
- output将导出目录设置为该路径后即可在宿主机中访问导出后的模型。
- `hf_cache`:使用宿主机的 Hugging Face 缓存文件夹,允许更改为新的目录。
- `ms_cache`:类似 Hugging Face 缓存文件夹,为 ModelScope 用户提供。
- `data`:宿主机中存放数据集的文件夹路径。
- `output`:将导出目录设置为该路径后,即可在宿主机中访问导出后的模型。
</details>

View File

@ -0,0 +1,5 @@
#!/bin/bash
python scripts/pissa_init.py \
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
--output_dir models/llama3-8b-pissa

View File

@ -43,7 +43,7 @@ def calculate_lr(
dataset_dir: str = "data",
template: str = "default",
cutoff_len: int = 1024, # i.e. maximum input length during training
is_mistral: bool = False, # mistral model uses a smaller learning rate,
is_mistral_or_gemma: bool = False, # mistral and gemma models opt for a smaller learning rate,
packing: bool = False,
):
r"""
@ -84,7 +84,7 @@ def calculate_lr(
valid_ratio = valid_tokens / total_tokens
batch_valid_len = batch_max_len * valid_ratio
lr = BASE_LR * math.sqrt(batch_valid_len / BASE_BS) # lr ~ sqrt(batch_size)
lr = lr / 6.0 if is_mistral else lr
lr = lr / 6.0 if is_mistral_or_gemma else lr
print(
"Optimal learning rate is {:.2e} for valid ratio% {:.2f} and effective batch size {:.2f}".format(
lr, valid_ratio * 100, batch_valid_len

View File

@ -19,7 +19,7 @@
import json
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Optional
from typing import TYPE_CHECKING
import fire
import torch
@ -47,8 +47,8 @@ def block_expansion(
model_name_or_path: str,
output_dir: str,
num_expand: int,
shard_size: Optional[str] = "2GB",
save_safetensors: Optional[bool] = False,
shard_size: str = "2GB",
save_safetensors: bool = True,
):
r"""
Performs block expansion for LLaMA, Mistral, Qwen1.5 or Yi models.

View File

@ -16,7 +16,7 @@
import json
import os
from collections import OrderedDict
from typing import Any, Dict, Optional
from typing import Any, Dict
import fire
import torch
@ -86,7 +86,10 @@ def save_config(input_dir: str, output_dir: str):
def llamafy_baichuan2(
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False
input_dir: str,
output_dir: str,
shard_size: str = "2GB",
save_safetensors: bool = True,
):
r"""
Converts the Baichuan2-7B model in the same format as LLaMA2-7B.

View File

@ -16,7 +16,7 @@
import json
import os
from collections import OrderedDict
from typing import Any, Dict, Optional
from typing import Any, Dict
import fire
import torch
@ -139,7 +139,10 @@ def save_config(input_dir: str, output_dir: str, torch_dtype: str):
def llamafy_qwen(
input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False
input_dir: str,
output_dir: str,
shard_size: str = "2GB",
save_safetensors: bool = False,
):
r"""
Converts the Qwen models in the same format as LLaMA2.

View File

@ -31,7 +31,7 @@ if TYPE_CHECKING:
def quantize_pissa(
model_name_or_path: str,
output_dir: str,
pissa_iter: int = 4,
pissa_iter: int = 16,
lora_alpha: int = None,
lora_rank: int = 16,
lora_dropout: float = 0,