support pissa

This commit is contained in:
hiyouga 2024-06-16 01:08:12 +08:00
parent 38b6b0f52e
commit 8c1046d78a
19 changed files with 406 additions and 76 deletions

View File

@ -49,7 +49,7 @@ Choose your path:
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 32-bit full-tuning, 16-bit freeze-tuning, 16-bit LoRA and 2/4/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8.
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ and Agent tuning.
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
- **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
@ -71,9 +71,9 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[24/06/07] We supported fine-tuning the **[Qwen-2](https://qwenlm.github.io/blog/qwen2/)** series models.
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
[24/06/05] We supported fine-tuning the **[GLM-4-9B/GLM-4-9B-Chat](https://github.com/THUDM/GLM-4)** models.
[24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.

View File

@ -49,7 +49,7 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **集成方法**增量预训练、多模态指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
- **多种精度**32 比特全参数微调、16 比特冻结微调、16 比特 LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8 的 2/4/8 比特 QLoRA 微调。
- **先进算法**GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 Agent 微调。
- **先进算法**GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
- **实用技巧**FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow 等等。
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
@ -71,9 +71,9 @@ https://github.com/hiyouga/LLaMA-Factory/assets/16256802/ec36a9dd-37f4-4f72-81bd
## 更新日志
[24/06/07] 我们支持了 **[Qwen-2](https://qwenlm.github.io/blog/qwen2/)** 系列模型的微调
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)
[24/06/05] 我们支持了 **[GLM-4-9B/GLM-4-9B-Chat](https://github.com/THUDM/GLM-4)** 模型的微调。
[24/06/07] 我们支持了 **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** 和 **[GLM-4](https://github.com/THUDM/GLM-4)** 模型的微调。
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。

View File

@ -213,3 +213,9 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```bash
bash examples/extras/fsdp_qlora/single_node.sh
```
#### PiSSA Fine-Tuning
```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```

View File

@ -213,3 +213,9 @@ llamafactory-cli train examples/extras/llama_pro/llama3_freeze_sft.yaml
```bash
bash examples/extras/fsdp_qlora/single_node.sh
```
#### PiSSA 微调
```bash
llamafactory-cli train examples/extras/pissa/llama3_lora_sft.yaml
```

View File

@ -0,0 +1,42 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: lora
lora_target: all
pissa_init: true
pissa_iter: 4
pissa_convert: true
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/lora/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-4
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
fp16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@ -1,7 +1,7 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by HuggingFace's PEFT library.
# This code is based on the HuggingFace's PEFT library.
# https://github.com/huggingface/peft/blob/v0.10.0/examples/loftq_finetuning/quantize_save_load.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -17,11 +17,9 @@
# limitations under the License.
import os
from typing import TYPE_CHECKING, Optional
from typing import TYPE_CHECKING
import fire
import torch
import torch.nn as nn
from peft import LoftQConfig, LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer
@ -30,41 +28,20 @@ if TYPE_CHECKING:
from transformers import PreTrainedModel
class Shell(nn.Module):
def __init__(self, weight: torch.Tensor, bias: Optional[torch.Tensor] = None):
super().__init__()
self.weight = nn.Parameter(weight, requires_grad=False)
if bias is not None:
self.bias = nn.Parameter(bias, requires_grad=False)
def unwrap_model(model: nn.Module, pattern=".base_layer") -> None:
for name in {k.split(pattern)[0] for k, _ in model.named_modules() if pattern in k}:
parent_name = ".".join(name.split(".")[:-1])
child_name = name.split(".")[-1]
parent_module = model.get_submodule(parent_name)
child_module = getattr(parent_module, child_name)
base_layer = getattr(child_module, "base_layer")
weight = getattr(base_layer, "weight", None)
bias = getattr(base_layer, "bias", None)
setattr(parent_module, child_name, Shell(weight, bias))
print("Model unwrapped.")
def quantize_loftq(
model_name_or_path: str,
save_dir: str,
loftq_bits: Optional[int] = 4,
loftq_iter: Optional[int] = 1,
lora_alpha: Optional[int] = None,
lora_rank: Optional[int] = 16,
lora_target: Optional[str] = "q_proj,v_proj",
save_safetensors: Optional[bool] = False,
output_dir: str,
loftq_bits: int = 4,
loftq_iter: int = 4,
lora_alpha: int = None,
lora_rank: int = 16,
lora_dropout: float = 0,
lora_target: str = "q_proj,v_proj",
save_safetensors: bool = True,
):
r"""
Initializes LoRA weights with LoRA-fine-tuning-aware Quantization (LoftQ)
Usage: python loftq_init.py --model_name_or_path path_to_model --save_dir output_dir
Usage: python loftq_init.py --model_name_or_path path_to_model --output_dir output_dir
"""
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")
@ -74,25 +51,34 @@ def quantize_loftq(
inference_mode=True,
r=lora_rank,
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
lora_dropout=0.1,
lora_dropout=lora_dropout,
target_modules=[name.strip() for name in lora_target.split(",")],
init_lora_weights="loftq",
loftq_config=loftq_config,
)
# Init LoftQ model
lora_model = get_peft_model(model, lora_config)
base_model: "PreTrainedModel" = lora_model.get_base_model()
print("Initializing LoftQ weights, it may be take several minutes, wait patiently.")
peft_model = get_peft_model(model, lora_config)
loftq_dir = os.path.join(output_dir, "loftq_init")
# Save LoftQ model
setattr(lora_model.base_model.peft_config["default"], "base_model_name_or_path", save_dir)
setattr(lora_model.base_model.peft_config["default"], "init_lora_weights", True)
lora_model.save_pretrained(os.path.join(save_dir, "adapters"), safe_serialization=save_safetensors)
setattr(peft_model.peft_config["default"], "base_model_name_or_path", output_dir)
setattr(peft_model.peft_config["default"], "init_lora_weights", True) # don't apply loftq again
peft_model.save_pretrained(loftq_dir, safe_serialization=save_safetensors)
print("Adapter weights saved in {}".format(loftq_dir))
# Save base model
unwrap_model(base_model)
base_model.save_pretrained(save_dir, safe_serialization=save_safetensors)
tokenizer.save_pretrained(save_dir)
base_model: "PreTrainedModel" = peft_model.unload()
base_model.save_pretrained(output_dir, safe_serialization=save_safetensors)
tokenizer.save_pretrained(output_dir)
print("Model weights saved in {}".format(output_dir))
print("Fine-tune this model with:")
print("model_name_or_path: {}".format(output_dir))
print("adapter_name_or_path: {}".format(loftq_dir))
print("finetuning_type: lora")
print("quantization_bit: {}".format(loftq_bits))
if __name__ == "__main__":

79
scripts/pissa_init.py Normal file
View File

@ -0,0 +1,79 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is based on the HuggingFace's PEFT library.
# https://github.com/huggingface/peft/blob/v0.11.0/examples/pissa_finetuning/preprocess.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING
import fire
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, AutoTokenizer
if TYPE_CHECKING:
from transformers import PreTrainedModel
def quantize_pissa(
model_name_or_path: str,
output_dir: str,
pissa_iter: int = 4,
lora_alpha: int = None,
lora_rank: int = 16,
lora_dropout: float = 0,
lora_target: str = "q_proj,v_proj",
save_safetensors: bool = True,
):
r"""
Initializes LoRA weights with Principal Singular values and Singular vectors Adaptation (PiSSA)
Usage: python pissa_init.py --model_name_or_path path_to_model --output_dir output_dir
"""
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype="auto")
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=lora_rank,
lora_alpha=lora_alpha if lora_alpha is not None else lora_rank * 2,
lora_dropout=lora_dropout,
target_modules=[name.strip() for name in lora_target.split(",")],
init_lora_weights="pissa" if pissa_iter == -1 else "pissa_niter_{}".format(pissa_iter)
)
# Init PiSSA model
peft_model = get_peft_model(model, lora_config)
pissa_dir = os.path.join(output_dir, "pissa_init")
# Save PiSSA model
setattr(peft_model.peft_config["default"], "init_lora_weights", True) # don't apply pissa again
peft_model.save_pretrained(pissa_dir, safe_serialization=save_safetensors)
print("Adapter weights saved in {}".format(pissa_dir))
# Save base model
base_model: "PreTrainedModel" = peft_model.unload()
base_model.save_pretrained(output_dir, safe_serialization=save_safetensors)
tokenizer.save_pretrained(output_dir)
print("Model weights saved in {}".format(output_dir))
print("Fine-tune this model with:")
print("model_name_or_path: {}".format(output_dir))
print("adapter_name_or_path: {}".format(pissa_dir))
print("finetuning_type: lora")
print("pissa_convert: true")
if __name__ == "__main__":
fire.Fire(quantize_pissa)

View File

@ -108,6 +108,18 @@ class LoraArguments:
default=False,
metadata={"help": "Whether or not to use the weight-decomposed lora method (DoRA)."},
)
pissa_init: bool = field(
default=False,
metadata={"help": "Whether or not to initialize a PiSSA adapter."},
)
pissa_iter: int = field(
default=4,
metadata={"help": "The number of iteration steps performed by FSVD in PiSSA. Use -1 to disable it."},
)
pissa_convert: bool = field(
default=False,
metadata={"help": "Whether or not to convert the PiSSA adapter to a normal LoRA adapter."},
)
create_new_adapter: bool = field(
default=False,
metadata={"help": "Whether or not to create a new adapter with randomly initialized weight."},
@ -340,7 +352,7 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
self.additional_target: Optional[List[str]] = split_arg(self.additional_target)
self.galore_target: List[str] = split_arg(self.galore_target)
self.freeze_vision_tower = self.freeze_vision_tower or self.train_mm_proj_only
self.use_ref_model = self.pref_loss not in ["orpo", "simpo"]
self.use_ref_model = (self.stage == "dpo" and self.pref_loss not in ["orpo", "simpo"])
assert self.finetuning_type in ["lora", "freeze", "full"], "Invalid fine-tuning method."
assert self.ref_model_quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization."
@ -367,5 +379,11 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
if self.loraplus_lr_ratio is not None and self.finetuning_type != "lora":
raise ValueError("`loraplus_lr_ratio` is only valid for LoRA training.")
if self.pissa_convert and self.finetuning_type != "lora":
raise ValueError("`pissa_convert` is only valid for LoRA training.")
if self.pissa_convert and (self.stage in ["rm", "ppo", "kto"] or self.use_ref_model):
raise ValueError("Cannot use PiSSA for current training stage.")
if self.train_mm_proj_only and self.finetuning_type != "full":
raise ValueError("`train_mm_proj_only` is only valid for full training.")

View File

@ -1,6 +1,6 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by HuggingFace's transformers library.
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -45,6 +45,10 @@ class ModelArguments:
)
},
)
adapter_folder: Optional[str] = field(
default=None,
metadata={"help": "The folder containing the adapter weights to load."},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."},
@ -150,7 +154,7 @@ class ModelArguments:
metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."},
)
vllm_max_lora_rank: int = field(
default=8,
default=32,
metadata={"help": "Maximum rank of all LoRAs in the vLLM engine."},
)
offload_folder: str = field(

View File

@ -1,6 +1,6 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by HuggingFace's transformers library.
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/examples/pytorch/language-modeling/run_clm.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -90,6 +90,9 @@ def _verify_model_args(model_args: "ModelArguments", finetuning_args: "Finetunin
if finetuning_args.finetuning_type != "lora":
raise ValueError("Quantization is only compatible with the LoRA method.")
if finetuning_args.use_pissa:
raise ValueError("Please use scripts/pissa_init.py for quantized PiSSA.")
if model_args.resize_vocab:
raise ValueError("Cannot resize embedding layers of a quantized model.")

View File

@ -179,8 +179,16 @@ def _setup_lora_tuning(
else:
adapter_to_merge = model_args.adapter_name_or_path
init_kwargs = {
"subfolder": model_args.adapter_folder,
"offload_folder": model_args.offload_folder,
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"token": model_args.hf_hub_token,
}
for adapter in adapter_to_merge:
model: "LoraModel" = PeftModel.from_pretrained(model, adapter, offload_folder=model_args.offload_folder)
model: "LoraModel" = PeftModel.from_pretrained(model, adapter, **init_kwargs)
model = model.merge_and_unload()
if len(adapter_to_merge) > 0:
@ -190,12 +198,7 @@ def _setup_lora_tuning(
if model_args.use_unsloth:
model = load_unsloth_peft_model(config, model_args, is_trainable=is_trainable)
else:
model = PeftModel.from_pretrained(
model,
adapter_to_resume,
is_trainable=is_trainable,
offload_folder=model_args.offload_folder,
)
model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable, **init_kwargs)
logger.info("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
@ -242,6 +245,14 @@ def _setup_lora_tuning(
if model_args.use_unsloth:
model = get_unsloth_peft_model(model, model_args, peft_kwargs)
else:
if finetuning_args.pissa_init:
if finetuning_args.pissa_iter == -1:
logger.info("Using PiSSA initialization.")
peft_kwargs["init_lora_weights"] = "pissa"
else:
logger.info("Using PiSSA initialization with FSVD steps {}.".format(finetuning_args.pissa_iter))
peft_kwargs["init_lora_weights"] = "pissa_niter_{}".format(finetuning_args.pissa_iter)
lora_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,

View File

@ -1,6 +1,6 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by HuggingFace's TRL library.
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/dpo_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -15,6 +15,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import warnings
from collections import defaultdict
from contextlib import nullcontext
@ -28,7 +29,7 @@ from trl import DPOTrainer
from trl.trainer import disable_dropout_in_model
from ...extras.constants import IGNORE_INDEX
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler, get_batch_logps
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler, get_batch_logps
if TYPE_CHECKING:
@ -91,6 +92,9 @@ class CustomDPOTrainer(DPOTrainer):
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
self.ref_model.eval()
if finetuning_args.pissa_convert:
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
@ -109,8 +113,11 @@ class CustomDPOTrainer(DPOTrainer):
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
if self.processor is not None:
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.finetuning_args.pissa_convert:
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
if self.processor is not None:
getattr(self.processor, "image_processor").save_pretrained(output_dir)
def odds_ratio_loss(self, chosen_logps: "torch.Tensor", rejected_logps: "torch.Tensor") -> "torch.Tensor":

View File

@ -12,13 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from types import MethodType
from typing import TYPE_CHECKING, Dict, Optional
from transformers import Trainer
from ...extras.logging import get_logger
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
@ -42,6 +43,10 @@ class CustomTrainer(Trainer):
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
self.processor = processor
if finetuning_args.pissa_convert:
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
@ -60,6 +65,9 @@ class CustomTrainer(Trainer):
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
if self.processor is not None:
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.finetuning_args.pissa_convert:
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
if self.processor is not None:
getattr(self.processor, "image_processor").save_pretrained(output_dir)

View File

@ -1,6 +1,6 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by HuggingFace's transformers library.
# This code is inspired by the HuggingFace's transformers library.
# https://github.com/huggingface/transformers/blob/v4.40.0/src/transformers/trainer_seq2seq.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -26,7 +26,7 @@ from transformers import Seq2SeqTrainer
from ...extras.constants import IGNORE_INDEX
from ...extras.logging import get_logger
from ..trainer_utils import create_custom_optimzer, create_custom_scheduler
from ..trainer_utils import convert_pissa_adapter, create_custom_optimzer, create_custom_scheduler
if TYPE_CHECKING:
@ -51,6 +51,10 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
super().__init__(**kwargs)
self.finetuning_args = finetuning_args
self.processor = processor
if finetuning_args.pissa_convert:
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
@ -69,8 +73,11 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, "torch.Tensor"]] = None) -> None:
super()._save(output_dir, state_dict)
if self.processor is not None:
output_dir = output_dir if output_dir is not None else self.args.output_dir
if self.finetuning_args.pissa_convert:
convert_pissa_adapter(output_dir, state_dict, self.accelerator, self.model, self.args)
if self.processor is not None:
getattr(self.processor, "image_processor").save_pretrained(output_dir)
def prediction_step(

View File

@ -1,9 +1,9 @@
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the GaLore's implementation: https://github.com/jiaweizzhao/GaLore
# and the LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
# and the BAdam's implementation: https://github.com/Ledzy/BAdam
# and the TRL's implementation: https://github.com/huggingface/trl
# This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore
# and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
# and the original BAdam's implementation: https://github.com/Ledzy/BAdam
# and the HuggingFace's TRL library: https://github.com/huggingface/trl
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -17,9 +17,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
import torch
from peft import PeftModel
from transformers import Trainer
from transformers.optimization import get_scheduler
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
@ -37,6 +39,7 @@ if is_galore_available():
if TYPE_CHECKING:
from accelerate import Accelerator
from transformers import PreTrainedModel, Seq2SeqTrainingArguments
from trl import AutoModelForCausalLMWithValueHead
@ -171,6 +174,49 @@ def create_reward_model(
return reward_model
def convert_pissa_adapter(
output_dir: str,
state_dict: Dict[str, "torch.Tensor"],
accelerator: "Accelerator",
model: "PreTrainedModel",
training_args: "Seq2SeqTrainingArguments",
) -> None:
r"""
Converts the PiSSA adapter to a LoRA adapter.
"""
pissa_init_dir = os.path.join(training_args.output_dir, "pissa_init")
pissa_backup_dir = os.path.join(output_dir, "pissa_backup")
if output_dir == pissa_init_dir:
logger.info("Initial PiSSA adatper will be saved at: {}.".format(pissa_init_dir))
unwrapped_model = accelerator.unwrap_model(model)
if isinstance(unwrapped_model, PeftModel):
init_lora_weights = getattr(unwrapped_model.peft_config["default"], "init_lora_weights")
setattr(unwrapped_model.peft_config["default"], "init_lora_weights", True)
unwrapped_model.save_pretrained(
output_dir,
state_dict=state_dict,
safe_serialization=training_args.save_safetensors,
)
setattr(unwrapped_model.peft_config["default"], "init_lora_weights", init_lora_weights)
elif output_dir == training_args.output_dir: # at the end of training
logger.info("Converted PiSSA adapter will be saved at: {}.".format(output_dir))
unwrapped_model = accelerator.unwrap_model(model)
if isinstance(unwrapped_model, PeftModel): # backup the pissa adapter for further use
unwrapped_model.save_pretrained(
pissa_backup_dir,
state_dict=state_dict,
safe_serialization=training_args.save_safetensors,
)
unwrapped_model.save_pretrained(
output_dir,
state_dict=state_dict,
safe_serialization=training_args.save_safetensors,
convert_pissa_to_lora=pissa_init_dir,
)
unwrapped_model.load_adapter(pissa_backup_dir, "default", is_trainable=True)
unwrapped_model.set_adapter("default")
def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
r"""
Returns a list of names of parameters with weight decay. (weights in non-layernorm layers)

View File

@ -163,10 +163,9 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
create_new_adapter = gr.Checkbox()
with gr.Row():
with gr.Column(scale=1):
use_rslora = gr.Checkbox()
use_dora = gr.Checkbox()
use_pissa = gr.Checkbox()
lora_target = gr.Textbox(scale=2)
additional_target = gr.Textbox(scale=2)
@ -179,6 +178,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
create_new_adapter,
use_rslora,
use_dora,
use_pissa,
lora_target,
additional_target,
}
@ -193,6 +193,7 @@ def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
create_new_adapter=create_new_adapter,
use_rslora=use_rslora,
use_dora=use_dora,
use_pissa=use_pissa,
lora_target=lora_target,
additional_target=additional_target,
)

View File

@ -732,6 +732,20 @@ LOCALES = {
"info": "使用权重分解的 LoRA。",
},
},
"use_pissa": {
"en": {
"label": "Use PiSSA",
"info": "Use PiSSA method.",
},
"ru": {
"label": "используйте PiSSA",
"info": "Используйте метод PiSSA.",
},
"zh": {
"label": "使用 PiSSA",
"info": "使用 PiSSA 方法。",
},
},
"lora_target": {
"en": {
"label": "LoRA modules (optional)",

View File

@ -173,6 +173,8 @@ class Runner:
args["create_new_adapter"] = get("train.create_new_adapter")
args["use_rslora"] = get("train.use_rslora")
args["use_dora"] = get("train.use_dora")
args["pissa_init"] = get("train.use_pissa")
args["pissa_convert"] = get("train.use_pissa")
args["lora_target"] = get("train.lora_target") or "all"
args["additional_target"] = get("train.additional_target") or None

90
tests/model/test_pissa.py Normal file
View File

@ -0,0 +1,90 @@
# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from peft import LoraModel, PeftModel
from transformers import AutoModelForCausalLM
from llamafactory.extras.misc import get_current_device
from llamafactory.hparams import get_infer_args, get_train_args
from llamafactory.model import load_model, load_tokenizer
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
TINY_LLAMA_PISSA = os.environ.get("TINY_LLAMA_ADAPTER", "llamafactory/tiny-random-Llama-3-pissa")
TRAIN_ARGS = {
"model_name_or_path": TINY_LLAMA,
"stage": "sft",
"do_train": True,
"finetuning_type": "lora",
"pissa_init": True,
"pissa_iter": -1,
"dataset": "llamafactory/tiny-supervised-dataset",
"dataset_dir": "ONLINE",
"template": "llama3",
"cutoff_len": 1024,
"overwrite_cache": True,
"output_dir": "dummy_dir",
"overwrite_output_dir": True,
"fp16": True,
}
INFER_ARGS = {
"model_name_or_path": TINY_LLAMA_PISSA,
"adapter_name_or_path": TINY_LLAMA_PISSA,
"adapter_folder": "pissa_init",
"finetuning_type": "lora",
"template": "llama3",
"infer_dtype": "float16",
}
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"):
state_dict_a = model_a.state_dict()
state_dict_b = model_b.state_dict()
assert set(state_dict_a.keys()) == set(state_dict_b.keys())
for name in state_dict_a.keys():
assert torch.allclose(state_dict_a[name], state_dict_b[name])
def test_pissa_init():
model_args, _, _, finetuning_args, _ = get_train_args(TRAIN_ARGS)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=True)
base_model = AutoModelForCausalLM.from_pretrained(
TINY_LLAMA_PISSA, torch_dtype=torch.float16, device_map=get_current_device()
)
ref_model = PeftModel.from_pretrained(base_model, TINY_LLAMA_PISSA, subfolder="pissa_init", is_trainable=True)
for param in filter(lambda p: p.requires_grad, ref_model.parameters()):
param.data = param.data.to(torch.float32)
compare_model(model, ref_model)
def test_pissa_inference():
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS)
tokenizer_module = load_tokenizer(model_args)
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False)
base_model = AutoModelForCausalLM.from_pretrained(
TINY_LLAMA_PISSA, torch_dtype=torch.float16, device_map=get_current_device()
)
ref_model: "LoraModel" = PeftModel.from_pretrained(base_model, TINY_LLAMA_PISSA, subfolder="pissa_init")
ref_model = ref_model.merge_and_unload()
compare_model(model, ref_model)