forked from p04798526/LLaMA-Factory-Mirror
Update supervised.py
This commit is contained in:
parent
b47e317447
commit
8cecade708
|
@ -1,10 +1,10 @@
|
|||
import itertools
|
||||
import bisect
|
||||
from collections import defaultdict
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||
|
||||
from ...extras.constants import IGNORE_INDEX
|
||||
from ...extras.logging import get_logger
|
||||
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values
|
||||
from .mm_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
|
@ -18,29 +18,19 @@ if TYPE_CHECKING:
|
|||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
def binary_search_for_fit(numbers, capacity):
|
||||
def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
|
||||
r"""
|
||||
Finds the index of largest number that fits into the knapsack with the given capacity.
|
||||
"""
|
||||
Perform binary search to find the largest number that fits into the knapsack with the given capacity.
|
||||
"""
|
||||
left, right = 0, len(numbers) - 1
|
||||
result = -1 # If no number fits, return -1
|
||||
|
||||
while left <= right:
|
||||
mid = (left + right) // 2
|
||||
if numbers[mid] <= capacity:
|
||||
result = mid
|
||||
left = mid + 1
|
||||
else:
|
||||
right = mid - 1
|
||||
|
||||
return result
|
||||
index = bisect.bisect(numbers, capacity)
|
||||
return -1 if index == 0 else (index - 1)
|
||||
|
||||
|
||||
def efficient_greedy_knapsack(numbers, capacity):
|
||||
"""
|
||||
def greedy_knapsack(numbers: List[int], capacity: int) -> List[List[int]]:
|
||||
r"""
|
||||
An efficient greedy algorithm with binary search for the knapsack problem.
|
||||
"""
|
||||
numbers.sort() # Sort numbers in ascending order for binary search
|
||||
numbers.sort() # sort numbers in ascending order for binary search
|
||||
knapsacks = []
|
||||
|
||||
while numbers:
|
||||
|
@ -48,22 +38,60 @@ def efficient_greedy_knapsack(numbers, capacity):
|
|||
remaining_capacity = capacity
|
||||
|
||||
while True:
|
||||
index = binary_search_for_fit(numbers, remaining_capacity)
|
||||
index = search_for_fit(numbers, remaining_capacity)
|
||||
if index == -1:
|
||||
break # No more numbers fit in this knapsack
|
||||
break # no more numbers fit in this knapsack
|
||||
|
||||
# Add the found number to the knapsack and update the remaining capacity
|
||||
current_knapsack.append(numbers[index])
|
||||
remaining_capacity -= numbers[index]
|
||||
|
||||
# Remove the number from the list
|
||||
numbers.pop(index)
|
||||
remaining_capacity -= numbers[index] # update the remaining capacity
|
||||
current_knapsack.append(numbers.pop(index)) # add the number to knapsack
|
||||
|
||||
knapsacks.append(current_knapsack)
|
||||
|
||||
return knapsacks
|
||||
|
||||
|
||||
def _encode_supervised_example(
|
||||
prompt: Sequence[Dict[str, str]],
|
||||
response: Sequence[Dict[str, str]],
|
||||
system: Optional[str],
|
||||
tools: Optional[str],
|
||||
template: "Template",
|
||||
tokenizer: "PreTrainedTokenizer",
|
||||
processor: Optional["ProcessorMixin"],
|
||||
data_args: "DataArguments",
|
||||
) -> Tuple[List[int], List[int]]:
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||
|
||||
messages = prompt + response
|
||||
input_ids, labels = [], []
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
input_ids += [image_token_id] * getattr(processor, "image_seq_length")
|
||||
labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length")
|
||||
|
||||
encoded_pairs = template.encode_multiturn(
|
||||
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||
)
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(encoded_pairs):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif turn_idx != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
input_ids += source_ids + target_ids
|
||||
labels += source_mask + target_ids
|
||||
|
||||
if template.efficient_eos:
|
||||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
return input_ids, labels
|
||||
|
||||
|
||||
def preprocess_supervised_dataset(
|
||||
examples: Dict[str, List[Any]],
|
||||
template: "Template",
|
||||
|
@ -84,41 +112,16 @@ def preprocess_supervised_dataset(
|
|||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
|
||||
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
input_ids, labels = [], []
|
||||
|
||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||
input_ids += [image_token_id] * getattr(processor, "image_seq_length")
|
||||
labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length")
|
||||
|
||||
for turn_idx, (source_ids, target_ids) in enumerate(
|
||||
template.encode_multiturn(
|
||||
tokenizer,
|
||||
messages,
|
||||
examples["system"][i],
|
||||
examples["tools"][i],
|
||||
data_args.cutoff_len,
|
||||
data_args.reserved_label_len,
|
||||
)
|
||||
):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
elif turn_idx != 0 and template.efficient_eos:
|
||||
source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1)
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
input_ids += source_ids + target_ids
|
||||
labels += source_mask + target_ids
|
||||
|
||||
if template.efficient_eos:
|
||||
input_ids += [tokenizer.eos_token_id]
|
||||
labels += [tokenizer.eos_token_id]
|
||||
|
||||
input_ids, labels = _encode_supervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=processor,
|
||||
data_args=data_args,
|
||||
)
|
||||
model_inputs["input_ids"].append(input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||
model_inputs["labels"].append(labels)
|
||||
|
@ -138,76 +141,54 @@ def preprocess_packed_supervised_dataset(
|
|||
) -> Dict[str, List[List[int]]]:
|
||||
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
|
||||
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
input_ids, labels = [], []
|
||||
valid_num = 0
|
||||
batch_input_ids, batch_labels = [], []
|
||||
lengths = []
|
||||
length2indexes = defaultdict(list)
|
||||
for i in range(len(examples["prompt"])):
|
||||
if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1:
|
||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||
continue
|
||||
|
||||
messages = examples["prompt"][i] + examples["response"][i]
|
||||
for source_ids, target_ids in template.encode_multiturn(
|
||||
tokenizer, messages, examples["system"][i], examples["tools"][i]
|
||||
):
|
||||
if data_args.train_on_prompt:
|
||||
source_mask = source_ids
|
||||
else:
|
||||
source_mask = [IGNORE_INDEX] * len(source_ids)
|
||||
|
||||
input_ids.append(source_ids + target_ids)
|
||||
labels.append(source_mask + target_ids)
|
||||
|
||||
# prepare for packing
|
||||
lengths = []
|
||||
length2examples_idx = defaultdict(list)
|
||||
for idx, example in enumerate(input_ids):
|
||||
length = len(example)
|
||||
input_ids, labels = _encode_supervised_example(
|
||||
prompt=examples["prompt"][i],
|
||||
response=examples["response"][i],
|
||||
system=examples["system"][i],
|
||||
tools=examples["tools"][i],
|
||||
template=template,
|
||||
tokenizer=tokenizer,
|
||||
processor=None,
|
||||
data_args=data_args,
|
||||
)
|
||||
length = len(input_ids)
|
||||
if length > data_args.cutoff_len:
|
||||
logger.warning("Dropped example with length {} > cutoff_len {}".format(length, data_args.cutoff_len))
|
||||
continue
|
||||
lengths.append(length)
|
||||
length2examples_idx[length].append(idx)
|
||||
|
||||
# cutoff_len - 1 for efficient_eos
|
||||
knapsacks = efficient_greedy_knapsack(lengths, data_args.cutoff_len - int(template.efficient_eos))
|
||||
|
||||
for knapsack in knapsacks:
|
||||
packed_input_ids = []
|
||||
packed_labels = []
|
||||
|
||||
total_length = 0
|
||||
for length in knapsack:
|
||||
total_length += length
|
||||
idx = length2examples_idx[length].pop()
|
||||
packed_input_ids.append(input_ids[idx])
|
||||
packed_labels.append(labels[idx])
|
||||
|
||||
# padding to cutoff_len
|
||||
if total_length < data_args.cutoff_len:
|
||||
pad_length = data_args.cutoff_len - total_length
|
||||
if template.efficient_eos:
|
||||
# 确保有 eos
|
||||
packed_input_ids.append([tokenizer.eos_token_id] * pad_length)
|
||||
packed_labels.append([tokenizer.eos_token_id] + [IGNORE_INDEX] * (pad_length - 1))
|
||||
else:
|
||||
# 无 eos 的情况下,使用 0 填充?
|
||||
packed_input_ids.append([0] * pad_length)
|
||||
packed_labels.append([tokenizer.eos_token_id] + [IGNORE_INDEX] * (pad_length - 1))
|
||||
|
||||
elif total_length == data_args.cutoff_len:
|
||||
pad_length = 0
|
||||
logger.warning("Dropped lengthy example with length {} > {}.".format(length, data_args.cutoff_len))
|
||||
else:
|
||||
logger.warning(
|
||||
"Dropped packed example with total length {} > cutoff_len {}".format(
|
||||
total_length, data_args.cutoff_len
|
||||
)
|
||||
)
|
||||
continue
|
||||
lengths.append(length)
|
||||
length2indexes[length].append(valid_num)
|
||||
batch_input_ids.append(input_ids)
|
||||
batch_labels.append(labels)
|
||||
valid_num += 1
|
||||
|
||||
# concat all
|
||||
model_inputs["input_ids"].append(list(itertools.chain(*packed_input_ids)))
|
||||
model_inputs["labels"].append(list(itertools.chain(*packed_labels)))
|
||||
model_inputs["attention_mask"].append([1] * total_length + [0] * pad_length)
|
||||
model_inputs = {"input_ids": [], "attention_mask": [], "labels": []}
|
||||
knapsacks = greedy_knapsack(lengths, data_args.cutoff_len)
|
||||
for knapsack in knapsacks:
|
||||
packed_input_ids, packed_labels = [], []
|
||||
for length in knapsack:
|
||||
index = length2indexes[length].pop()
|
||||
packed_input_ids += batch_input_ids[index]
|
||||
packed_labels += batch_labels[index]
|
||||
|
||||
if len(packed_input_ids) <= data_args.cutoff_len:
|
||||
pad_length = data_args.cutoff_len - len(packed_input_ids)
|
||||
packed_input_ids += [tokenizer.pad_token_id] * pad_length
|
||||
packed_labels += [IGNORE_INDEX] * pad_length
|
||||
else:
|
||||
raise ValueError("The length of packed example exceeds the cutoff length.")
|
||||
|
||||
model_inputs["input_ids"].append(packed_input_ids)
|
||||
model_inputs["attention_mask"].append([1] * len(packed_input_ids))
|
||||
model_inputs["labels"].append(packed_labels)
|
||||
|
||||
return model_inputs
|
||||
|
||||
|
|
Loading…
Reference in New Issue