add prompt template class

This commit is contained in:
hiyouga 2023-06-07 11:55:25 +08:00
parent 5d021d4ad5
commit 909af8f496
8 changed files with 67 additions and 40 deletions

View File

@ -21,11 +21,10 @@ import datetime
from fastapi import FastAPI, Request
from utils import (
Template,
load_pretrained,
prepare_infer_args,
get_logits_processor,
prompt_template_alpaca,
prompt_template_ziya
get_logits_processor
)
@ -43,7 +42,7 @@ app = FastAPI()
@app.post("/")
async def create_item(request: Request):
global model, tokenizer, format_example
global model, tokenizer, prompt_template
# Parse the request JSON
json_post_raw = await request.json()
@ -53,7 +52,7 @@ async def create_item(request: Request):
history = json_post_list.get("history")
# Tokenize the input prompt
input_ids = tokenizer([format_example(prompt, history)], return_tensors="pt")["input_ids"]
input_ids = tokenizer([prompt_template.get_prompt(prompt, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
# Generation arguments
@ -98,6 +97,6 @@ async def create_item(request: Request):
if __name__ == "__main__":
model_args, data_args, finetuning_args = prepare_infer_args()
model, tokenizer = load_pretrained(model_args, finetuning_args)
format_example = prompt_template_alpaca if data_args.prompt_template == "alpaca" else prompt_template_ziya
prompt_template = Template(data_args.prompt_template)
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)

View File

@ -4,11 +4,10 @@
from utils import (
Template,
load_pretrained,
prepare_infer_args,
get_logits_processor,
prompt_template_alpaca,
prompt_template_ziya
get_logits_processor
)
from threading import Thread
from transformers import TextIteratorStreamer
@ -20,11 +19,11 @@ def main():
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
model, tokenizer = load_pretrained(model_args, finetuning_args)
format_example = prompt_template_alpaca if data_args.prompt_template == "alpaca" else prompt_template_ziya
prompt_template = Template(data_args.prompt_template)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
def predict_and_print(query, history: list):
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
input_ids = tokenizer([prompt_template.get_prompt(query, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
gen_kwargs = {
"input_ids": input_ids,

View File

@ -14,6 +14,6 @@ from .seq2seq import ComputeMetrics, Seq2SeqPeftTrainer
from .pairwise import PairwiseDataCollatorWithPadding, PairwisePeftTrainer
from .ppo import PPOPeftTrainer
from .template import prompt_template_alpaca, prompt_template_ziya
from .template import Template
from .other import get_logits_processor, plot_loss

View File

@ -29,6 +29,8 @@ from peft import (
get_peft_model
)
from peft.utils import CONFIG_NAME
from trl import AutoModelForCausalLMWithValueHead
from .config import (
@ -37,10 +39,7 @@ from .config import (
FinetuningArguments
)
from .template import (
prompt_template_alpaca,
prompt_template_ziya
)
from .template import Template
from .other import (
get_logger,
@ -102,6 +101,9 @@ def _init_adapter(
logger.info("Fine-tuning method: LoRA")
lastest_checkpoint = None
assert os.path.exists(model_args.checkpoint_dir[0], CONFIG_NAME), \
"The given checkpoint is not a LoRA checkpoint, please specify `--finetuning_type full/freeze` instead."
if model_args.checkpoint_dir is not None:
if (is_trainable and model_args.resume_lora_training) or (not is_mergeable): # continually train on the lora weights
checkpoints_to_merge, lastest_checkpoint = model_args.checkpoint_dir[:-1], model_args.checkpoint_dir[-1]
@ -401,7 +403,7 @@ def preprocess_data(
column_names = list(dataset.column_names)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
prompt_template = prompt_template_alpaca if data_args.prompt_template == "alpaca" else prompt_template_ziya
prompt_template = Template(data_args.prompt_template)
# support question with a single answer or multiple answers
def format_example(examples):
@ -410,8 +412,7 @@ def preprocess_data(
query, answer = examples["prompt"][i], examples["response"][i]
if examples["query"][i]:
query += "\n" + examples["query"][i]
prompt = prompt_template(query, examples["history"][i])
prompt = prefix + prompt
prompt = prompt_template.get_prompt(query, examples["history"][i], prefix)
yield prompt, answer
def preprocess_pretrain_dataset(examples):

View File

@ -141,7 +141,7 @@ class DataTrainingArguments:
default=0,
metadata={"help": "Proportion of the dataset to include in the development set, should be between 0.0 and 1.0."}
)
prompt_template: Optional[Literal["alpaca", "ziya"]] = field(
prompt_template: Optional[Literal["alpaca", "vicuna", "ziya"]] = field(
default="alpaca",
metadata={"help": "Which template to use for constructing prompts in training."}
)

View File

@ -10,7 +10,7 @@ from transformers.modeling_utils import PreTrainedModel
from transformers.generation.utils import LogitsProcessorList
from transformers.generation.logits_process import LogitsProcessor
from peft.utils.other import WEIGHTS_NAME
from peft.utils import WEIGHTS_NAME
IGNORE_INDEX = -100

View File

@ -1,16 +1,45 @@
def prompt_template_alpaca(query, history=None):
prompt = ""
if history:
for old_query, response in history:
prompt += "Human:{}\nAssistant:{}\n".format(old_query, response)
prompt += "Human:{}\nAssistant:".format(query)
return prompt
from typing import Optional
from dataclasses import dataclass
def prompt_template_ziya(query, history=None):
prompt = ""
if history:
for old_query, response in history:
prompt += "<human>:{}\n<bot>:{}\n".format(old_query, response)
prompt += "<human>:{}\n<bot>:".format(query)
return prompt
@dataclass
class Template:
name: str
def get_prompt(self, query: str, history: Optional[list] = None, prefix: Optional[str] = "") -> str:
return getattr(self, "_format_{}".format(self.name))(query, history, prefix)
def _format_alpaca(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
if prefix:
prompt = prefix
else:
prompt = "Below is an instruction that describes a task. "
prompt += "Write a response that appropriately completes the request.\n"
prompt += "Instruction:\n"
if history:
for old_query, response in history:
prompt += "Human:{}\nAssistant:{}\n".format(old_query, response)
prompt += "Human:{}\nAssistant:".format(query)
return prompt
def _format_vicuna(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
if prefix:
prompt = prefix
else:
prompt = "A chat between a curious user and an artificial intelligence assistant. "
prompt += "The assistant gives helpful, detailed, and polite answers to the user's questions. "
if history:
for old_query, response in history:
prompt += "USER: {} ASSISTANT: {}</s>".format(old_query, response)
prompt += "USER: {} ASSISTANT:".format(query)
return prompt
def _format_ziya(self, query: str, history: Optional[list], prefix: Optional[str] = "") -> str:
prompt = prefix
if history:
for old_query, response in history:
prompt += "<human>:{}\n<bot>:{}\n".format(old_query, response)
prompt += "<human>:{}\n<bot>:".format(query)
return prompt

View File

@ -8,11 +8,10 @@ import gradio as gr
from threading import Thread
from utils import (
Template,
load_pretrained,
prepare_infer_args,
get_logits_processor,
prompt_template_alpaca,
prompt_template_ziya
get_logits_processor
)
from transformers import TextIteratorStreamer
@ -25,7 +24,7 @@ require_version("gradio>=3.30.0", "To fix: pip install gradio>=3.30.0")
model_args, data_args, finetuning_args = prepare_infer_args()
model, tokenizer = load_pretrained(model_args, finetuning_args)
format_example = prompt_template_alpaca if data_args.prompt_template == "alpaca" else prompt_template_ziya
prompt_template = Template(data_args.prompt_template)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
@ -81,7 +80,7 @@ def parse_text(text): # copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT
def predict(query, chatbot, max_length, top_p, temperature, history):
chatbot.append((parse_text(query), ""))
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
input_ids = tokenizer([prompt_template.get_prompt(query, history)], return_tensors="pt")["input_ids"]
input_ids = input_ids.to(model.device)
gen_kwargs = {
"input_ids": input_ids,