[FEATURE]: ADD LORA+ ALGORITHM

This commit is contained in:
齐保元 2024-03-13 19:43:27 +08:00
parent dfd451b722
commit a0965cd62c
4 changed files with 130 additions and 3 deletions

View File

@ -0,0 +1,33 @@
#!/bin/bash
CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path meta-llama/Llama-2-7b-hf \
--dataset alpaca_gpt4_en,glaive_toolcall \
--dataset_dir ../../data \
--template default \
--finetuning_type lora \
--lora_target q_proj,v_proj \
--output_dir ../../saves/LLaMA2-7B/lora_plus/sft \
--overwrite_cache \
--overwrite_output_dir \
--cutoff_len 1024 \
--preprocessing_num_workers 16 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--warmup_steps 20 \
--save_steps 100 \
--eval_steps 100 \
--evaluation_strategy steps \
--load_best_model_at_end \
--learning_rate 5e-5 \
--num_train_epochs 3.0 \
--max_samples 3000 \
--val_size 0.1 \
--plot_loss \
--fp16 \
--lora_lr_ratio 16.0

View File

@ -210,6 +210,11 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
default=False,
metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."},
)
# for lora+,[LoRA+: Efficient Low Rank Adaptation of Large Models](https://arxiv.org/pdf/2402.12354.pdf)
lora_lr_ratio: Optional[float] = field(
default=None,
metadata={'help': 'The lora learning_rate ratio of lora_A to lora_B, option:16.0.'},
)
plot_loss: bool = field(
default=False,
metadata={"help": "Whether or not to save the training loss curves."},

View File

@ -12,7 +12,7 @@ from ...model import load_model, load_tokenizer
from ...train.sft.metric import ComputeMetrics
from ...train.sft.trainer import CustomSeq2SeqTrainer
from ...train.utils import create_modelcard_and_push
from ..utils import create_custom_optimzer
from ..utils import create_custom_optimzer, create_lora_plus_optimizer
if TYPE_CHECKING:
@ -51,6 +51,8 @@ def run_sft(
# Initialize our Trainer
optimizer = create_custom_optimzer(model, dataset, training_args, finetuning_args)
if finetuning_args.lora_lr_ratio:
optimizer = create_lora_plus_optimizer(model, training_args, finetuning_args)
trainer = CustomSeq2SeqTrainer(
model=model,
args=training_args,

View File

@ -1,7 +1,8 @@
import math
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Union
from transformers.trainer import Trainer
import torch
from torch import nn
from transformers.optimization import get_scheduler
from transformers.utils.versions import require_version
@ -17,7 +18,7 @@ if is_galore_available():
if TYPE_CHECKING:
from datasets import Dataset, IterableDataset
from transformers import Seq2SeqTrainingArguments, Trainer
from transformers import Seq2SeqTrainingArguments
from transformers.modeling_utils import PreTrainedModel
from trl import AutoModelForCausalLMWithValueHead
@ -244,3 +245,89 @@ def create_custom_optimzer(
logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.")
return optimizer
def optimizer_group_callback(model, lora_lr_ratio, **defaults):
"lora plus"
params = []
names = set()
for name, param in model.named_parameters():
if "default" in name and ('lora_B' in name or
'lora_embedding_B' in name):
params.append(param)
names.add(name)
if params:
assert 'lr' in defaults
return names, {
'params': params,
'lr': defaults['lr'] * lora_lr_ratio,
}
return None, None
def create_lora_plus_optimizer(
model: "PreTrainedModel",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
) -> Optional["torch.optim.Optimizer"]:
if finetuning_args.lora_lr_ratio is None:
return None
all_param_names = set()
param_groups = []
param_names, param_group = optimizer_group_callback(
model, lora_lr_ratio=finetuning_args.lora_lr_ratio,
lr=training_args.learning_rate,
weight_decay=training_args.weight_decay)
if param_names and all_param_names & param_names:
raise ValueError(
'Cannot set one parameter to different param groups')
if param_names and param_group:
all_param_names.update(param_names)
param_groups.append(param_group)
opt_model = model
decay_parameters = Trainer.get_decay_parameter_names(None, opt_model)
param_groups.extend([
{
'params': [
p for n, p in opt_model.named_parameters()
if (n in decay_parameters and n not in all_param_names and p.requires_grad)
],
'weight_decay':
training_args.weight_decay,
},
{
'params': [
p for n, p in opt_model.named_parameters()
if (n not in decay_parameters and n not in all_param_names and p.requires_grad)
],
'weight_decay':
0.0,
},
])
optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
optimizer = optimizer_cls(param_groups, **optimizer_kwargs)
if optimizer_cls.__name__ == 'Adam8bit':
import bitsandbytes
manager = bitsandbytes.optim.GlobalOptimManager.get_instance()
skipped = 0
for module in opt_model.modules():
if isinstance(module, nn.Embedding):
skipped += sum({
p.data_ptr(): p.numel()
for p in module.parameters()
}.values())
logger.info(
f'skipped {module}: {skipped / 2 ** 20}M params')
manager.register_module_override(
module, 'weight', {'optim_bits': 32})
logger.debug(
f'bitsandbytes: will optimize {module} in fp32')
logger.info(f'skipped: {skipped / 2 ** 20}M params')
return optimizer