This commit is contained in:
hiyouga 2023-12-03 22:35:47 +08:00
parent 438dea679b
commit c9b166615c
2 changed files with 20 additions and 5 deletions

View File

@ -68,6 +68,20 @@ def count_parameters(model: torch.nn.Module) -> Tuple[int, int]:
return trainable_params, all_param
def get_current_device() -> torch.device:
import accelerate
if accelerate.utils.is_xpu_available():
device = "xpu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif accelerate.utils.is_npu_available():
device = "npu:{}".format(os.environ.get("LOCAL_RANK", "0"))
elif torch.cuda.is_available():
device = "cuda:{}".format(os.environ.get("LOCAL_RANK", "0"))
else:
device = "cpu"
return torch.device(device)
def get_logits_processor() -> "LogitsProcessorList":
r"""
Gets logits processor that removes NaN and Inf logits.

View File

@ -2,7 +2,7 @@ import os
import math
import torch
from types import MethodType
from typing import TYPE_CHECKING, Literal, Optional, Tuple
from typing import TYPE_CHECKING, Optional, Tuple
from transformers import (
AutoConfig,
@ -23,7 +23,7 @@ except ImportError: # https://github.com/huggingface/transformers/releases/tag/v
from transformers.deepspeed import is_deepspeed_zero3_enabled
from llmtuner.extras.logging import get_logger
from llmtuner.extras.misc import count_parameters, infer_optim_dtype, try_download_model_from_ms
from llmtuner.extras.misc import count_parameters, get_current_device, infer_optim_dtype, try_download_model_from_ms
from llmtuner.extras.packages import is_flash_attn2_available
from llmtuner.extras.patches import llama_patch as LlamaPatches
from llmtuner.hparams import FinetuningArguments
@ -151,7 +151,7 @@ def load_model_and_tokenizer(
if getattr(config, "quantization_config", None):
if model_args.quantization_bit is not None: # remove bnb quantization
model_args.quantization_bit = None
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
config_kwargs["device_map"] = {"": get_current_device()}
quantization_config = getattr(config, "quantization_config", None)
logger.info("Loading {}-bit quantized model.".format(quantization_config.get("bits", -1)))
@ -173,7 +173,7 @@ def load_model_and_tokenizer(
bnb_4bit_quant_type=model_args.quantization_type
)
config_kwargs["device_map"] = {"": int(os.environ.get("LOCAL_RANK", "0"))}
config_kwargs["device_map"] = {"": get_current_device()}
logger.info("Quantizing model to {} bit.".format(model_args.quantization_bit))
# Load pre-trained models (without valuehead)
@ -209,7 +209,8 @@ def load_model_and_tokenizer(
# Prepare model with valuehead for RLHF
if add_valuehead:
model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained(model)
setattr(model, "_keys_to_ignore_on_save", [name for name, _ in model.named_parameters() if "pretrained_model" in name])
ignore_modules = [name for name, _ in model.named_parameters() if "pretrained_model" in name]
setattr(model, "_keys_to_ignore_on_save", ignore_modules)
setattr(model, "tie_weights", MethodType(lambda _: None, model)) # use empty method
vhead_path = (
model_args.checkpoint_dir[-1] if model_args.checkpoint_dir is not None else model_args.model_name_or_path