forked from p04798526/LLaMA-Factory-Mirror
update data readme
This commit is contained in:
parent
18cbf8561d
commit
ca48f90f1e
|
@ -1,4 +1,4 @@
|
|||
The `dataset_info.json` contains all available datasets. If you are using a custom dataset, please make sure to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
|
||||
The [dataset_info.json](dataset_info.json) contains all available datasets. If you are using a custom dataset, please **make sure** to add a *dataset description* in `dataset_info.json` and specify `dataset: dataset_name` before training to use it.
|
||||
|
||||
Currently we support datasets in **alpaca** and **sharegpt** format.
|
||||
|
||||
|
@ -41,11 +41,13 @@ Currently we support datasets in **alpaca** and **sharegpt** format.
|
|||
|
||||
### Supervised Fine-Tuning Dataset
|
||||
|
||||
* [Example dataset](alpaca_en_demo.json)
|
||||
|
||||
In supervised fine-tuning, the `instruction` column will be concatenated with the `input` column and used as the human prompt, then the human prompt would be `instruction\ninput`. The `output` column represents the model response.
|
||||
|
||||
The `system` column will be used as the system prompt if specified.
|
||||
|
||||
The `history` column is a list consisting string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.
|
||||
The `history` column is a list consisting of string tuples representing prompt-response pairs in the history messages. Note that the responses in the history **will also be learned by the model** in supervised fine-tuning.
|
||||
|
||||
```json
|
||||
[
|
||||
|
@ -79,7 +81,9 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
|
|||
|
||||
### Pre-training Dataset
|
||||
|
||||
In pre-training, only the `prompt` column will be used for model learning.
|
||||
- [Example dataset](c4_demo.json)
|
||||
|
||||
In pre-training, only the `text` column will be used for model learning.
|
||||
|
||||
```json
|
||||
[
|
||||
|
@ -133,6 +137,8 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
|
|||
|
||||
### KTO Dataset
|
||||
|
||||
- [Example dataset](kto_en_demo.json)
|
||||
|
||||
KTO datasets require a extra `kto_tag` column containing the boolean human feedback.
|
||||
|
||||
```json
|
||||
|
@ -162,7 +168,9 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
|
|||
|
||||
### Multimodal Dataset
|
||||
|
||||
Multimodal datasets require a `images` column containing the paths to the input image. Currently we only support one image.
|
||||
- [Example dataset](mllm_demo.json)
|
||||
|
||||
Multimodal datasets require a `images` column containing the paths to the input images. Currently we only support one image.
|
||||
|
||||
```json
|
||||
[
|
||||
|
@ -195,7 +203,9 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
|
|||
|
||||
### Supervised Fine-Tuning Dataset
|
||||
|
||||
Compared to the alpaca format, the sharegpt format allows the datasets have more **roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
|
||||
- [Example dataset](glaive_toolcall_en_demo.json)
|
||||
|
||||
Compared to the alpaca format, the sharegpt format allows the datasets have **more roles**, such as human, gpt, observation and function. They are presented in a list of objects in the `conversations` column.
|
||||
|
||||
Note that the human and observation should appear in odd positions, while gpt and function should appear in even positions.
|
||||
|
||||
|
@ -208,12 +218,12 @@ Note that the human and observation should appear in odd positions, while gpt an
|
|||
"value": "human instruction"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "model response"
|
||||
"from": "function_call",
|
||||
"value": "tool arguments"
|
||||
},
|
||||
{
|
||||
"from": "human",
|
||||
"value": "human instruction"
|
||||
"from": "observation",
|
||||
"value": "tool result"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
|
@ -242,6 +252,8 @@ Regarding the above dataset, the *dataset description* in `dataset_info.json` sh
|
|||
|
||||
### Preference Dataset
|
||||
|
||||
- [Example dataset](dpo_en_demo.json)
|
||||
|
||||
Preference datasets in sharegpt format also require a better message in `chosen` column and a worse message in `rejected` column.
|
||||
|
||||
```json
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
`dataset_info.json` 包含了所有可用的数据集。如果您希望使用自定义数据集,请务必在 `dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
|
||||
[dataset_info.json](dataset_info.json) 包含了所有可用的数据集。如果您希望使用自定义数据集,请**务必**在 `dataset_info.json` 文件中添加*数据集描述*,并通过修改 `dataset: 数据集名称` 配置来使用数据集。
|
||||
|
||||
目前我们支持 **alpaca** 格式和 **sharegpt** 格式的数据集。
|
||||
|
||||
|
@ -41,6 +41,8 @@
|
|||
|
||||
### 指令监督微调数据集
|
||||
|
||||
- [样例数据集](alpaca_zh_demo.json)
|
||||
|
||||
在指令监督微调时,`instruction` 列对应的内容会与 `input` 列对应的内容拼接后作为人类指令,即人类指令为 `instruction\ninput`。而 `output` 列对应的内容为模型回答。
|
||||
|
||||
如果指定,`system` 列对应的内容将被作为系统提示词。
|
||||
|
@ -79,7 +81,9 @@
|
|||
|
||||
### 预训练数据集
|
||||
|
||||
对于**预训练数据集**,仅 `prompt` 列中的内容会用于模型学习,例如:
|
||||
- [样例数据集](c4_demo.json)
|
||||
|
||||
在预训练时,只有 `text` 列中的内容会用于模型学习。
|
||||
|
||||
```json
|
||||
[
|
||||
|
@ -133,6 +137,8 @@
|
|||
|
||||
### KTO 数据集
|
||||
|
||||
- [样例数据集](kto_en_demo.json)
|
||||
|
||||
KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人类反馈。
|
||||
|
||||
```json
|
||||
|
@ -162,6 +168,8 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
|
|||
|
||||
### 多模态数据集
|
||||
|
||||
- [样例数据集](mllm_demo.json)
|
||||
|
||||
多模态数据集需要额外添加一个 `images` 列,包含输入图像的路径。目前我们仅支持单张图像输入。
|
||||
|
||||
```json
|
||||
|
@ -195,9 +203,11 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
|
|||
|
||||
### 指令监督微调数据集
|
||||
|
||||
相比 alpaca 格式的数据集,sharegpt 格式支持更多的**角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
|
||||
- [样例数据集](glaive_toolcall_zh_demo.json)
|
||||
|
||||
其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置。
|
||||
相比 alpaca 格式的数据集,sharegpt 格式支持**更多的角色种类**,例如 human、gpt、observation、function 等等。它们构成一个对象列表呈现在 `conversations` 列中。
|
||||
|
||||
注意其中 human 和 observation 必须出现在奇数位置,gpt 和 function 必须出现在偶数位置。
|
||||
|
||||
```json
|
||||
[
|
||||
|
@ -208,12 +218,12 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
|
|||
"value": "人类指令"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
"value": "模型回答"
|
||||
"from": "function_call",
|
||||
"value": "工具参数"
|
||||
},
|
||||
{
|
||||
"from": "human",
|
||||
"value": "人类指令"
|
||||
"from": "observation",
|
||||
"value": "工具结果"
|
||||
},
|
||||
{
|
||||
"from": "gpt",
|
||||
|
@ -236,18 +246,14 @@ KTO 数据集需要额外添加一个 `kto_tag` 列,包含 bool 类型的人
|
|||
"messages": "conversations",
|
||||
"system": "system",
|
||||
"tools": "tools"
|
||||
},
|
||||
"tags": {
|
||||
"role_tag": "from",
|
||||
"content_tag": "value",
|
||||
"user_tag": "human",
|
||||
"assistant_tag": "gpt"
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 偏好数据集
|
||||
|
||||
- [样例数据集](dpo_zh_demo.json)
|
||||
|
||||
Sharegpt 格式的偏好数据集同样需要在 `chosen` 列中提供更优的消息,并在 `rejected` 列中提供更差的消息。
|
||||
|
||||
```json
|
||||
|
|
Loading…
Reference in New Issue