forked from p04798526/LLaMA-Factory-Mirror
update data processors
This commit is contained in:
parent
181dbb0d05
commit
ccc8b64cc2
|
@ -72,7 +72,7 @@ def main():
|
||||||
elif command == Command.EXPORT:
|
elif command == Command.EXPORT:
|
||||||
export_model()
|
export_model()
|
||||||
elif command == Command.TRAIN:
|
elif command == Command.TRAIN:
|
||||||
disable_torchrun = os.environ.get("DISABLE_TORCHRUN", "0").lower() in ["true", "1"]
|
disable_torchrun = os.environ.get("TORCHRUN_DISABLED", "0").lower() in ["true", "1"]
|
||||||
if disable_torchrun and get_device_count() > 1:
|
if disable_torchrun and get_device_count() > 1:
|
||||||
logger.warning("`torchrun` cannot be disabled when device count > 1.")
|
logger.warning("`torchrun` cannot be disabled when device count > 1.")
|
||||||
disable_torchrun = False
|
disable_torchrun = False
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||||
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
|
@ -16,6 +16,55 @@ if TYPE_CHECKING:
|
||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def _encode_feedback_example(
|
||||||
|
prompt: Sequence[Dict[str, str]],
|
||||||
|
response: Sequence[Dict[str, str]],
|
||||||
|
kl_response: Sequence[Dict[str, str]],
|
||||||
|
system: Optional[str],
|
||||||
|
tools: Optional[str],
|
||||||
|
template: "Template",
|
||||||
|
tokenizer: "PreTrainedTokenizer",
|
||||||
|
processor: Optional["ProcessorMixin"],
|
||||||
|
data_args: "DataArguments",
|
||||||
|
) -> Tuple[List[int], List[int], List[int], List[int], bool]:
|
||||||
|
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||||
|
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||||
|
|
||||||
|
if response[0]["content"]: # desired example
|
||||||
|
kto_tag = True
|
||||||
|
messages = prompt + [response[0]]
|
||||||
|
else: # undesired example
|
||||||
|
kto_tag = False
|
||||||
|
messages = prompt + [response[1]]
|
||||||
|
|
||||||
|
if kl_response[0]["content"]:
|
||||||
|
kl_messages = prompt + [kl_response[0]]
|
||||||
|
else:
|
||||||
|
kl_messages = prompt + [kl_response[1]]
|
||||||
|
|
||||||
|
prompt_ids, response_ids = template.encode_oneturn(
|
||||||
|
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||||
|
)
|
||||||
|
_, kl_response_ids = template.encode_oneturn(
|
||||||
|
tokenizer, kl_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||||
|
)
|
||||||
|
|
||||||
|
if template.efficient_eos:
|
||||||
|
response_ids += [tokenizer.eos_token_id]
|
||||||
|
kl_response_ids += [tokenizer.eos_token_id]
|
||||||
|
|
||||||
|
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||||
|
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||||
|
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||||
|
|
||||||
|
input_ids = prompt_ids + response_ids
|
||||||
|
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
|
||||||
|
kl_input_ids = prompt_ids + kl_response_ids
|
||||||
|
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
|
||||||
|
|
||||||
|
return input_ids, labels, kl_input_ids, kl_labels, kto_tag
|
||||||
|
|
||||||
|
|
||||||
def preprocess_feedback_dataset(
|
def preprocess_feedback_dataset(
|
||||||
examples: Dict[str, List[Any]],
|
examples: Dict[str, List[Any]],
|
||||||
template: "Template",
|
template: "Template",
|
||||||
|
@ -45,50 +94,17 @@ def preprocess_feedback_dataset(
|
||||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
input_ids, labels, kl_input_ids, kl_labels, kto_tag = _encode_feedback_example(
|
||||||
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
|
prompt=examples["prompt"][i],
|
||||||
|
response=examples["response"][i],
|
||||||
if examples["response"][i][0]["content"]: # desired example
|
kl_response=kl_response[i],
|
||||||
kto_tag = True
|
system=examples["system"][i],
|
||||||
messages = examples["prompt"][i] + [examples["response"][i][0]]
|
tools=examples["tools"][i],
|
||||||
else: # undesired example
|
template=template,
|
||||||
kto_tag = False
|
tokenizer=tokenizer,
|
||||||
messages = examples["prompt"][i] + [examples["response"][i][1]]
|
processor=processor,
|
||||||
|
data_args=data_args,
|
||||||
if kl_response[i][0]["content"]:
|
|
||||||
kl_messages = examples["prompt"][i] + [kl_response[i][0]]
|
|
||||||
else:
|
|
||||||
kl_messages = examples["prompt"][i] + [kl_response[i][1]]
|
|
||||||
|
|
||||||
prompt_ids, response_ids = template.encode_oneturn(
|
|
||||||
tokenizer,
|
|
||||||
messages,
|
|
||||||
examples["system"][i],
|
|
||||||
examples["tools"][i],
|
|
||||||
data_args.cutoff_len,
|
|
||||||
data_args.reserved_label_len,
|
|
||||||
)
|
)
|
||||||
_, kl_response_ids = template.encode_oneturn(
|
|
||||||
tokenizer,
|
|
||||||
kl_messages,
|
|
||||||
examples["system"][i],
|
|
||||||
examples["tools"][i],
|
|
||||||
data_args.cutoff_len,
|
|
||||||
data_args.reserved_label_len,
|
|
||||||
)
|
|
||||||
|
|
||||||
if template.efficient_eos:
|
|
||||||
response_ids += [tokenizer.eos_token_id]
|
|
||||||
kl_response_ids += [tokenizer.eos_token_id]
|
|
||||||
|
|
||||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
|
||||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
|
||||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
|
||||||
|
|
||||||
input_ids = prompt_ids + response_ids
|
|
||||||
labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids
|
|
||||||
kl_input_ids = prompt_ids + kl_response_ids
|
|
||||||
kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids
|
|
||||||
model_inputs["input_ids"].append(input_ids)
|
model_inputs["input_ids"].append(input_ids)
|
||||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||||
model_inputs["labels"].append(labels)
|
model_inputs["labels"].append(labels)
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||||
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
|
@ -16,6 +16,44 @@ if TYPE_CHECKING:
|
||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def _encode_pairwise_example(
|
||||||
|
prompt: Sequence[Dict[str, str]],
|
||||||
|
response: Sequence[Dict[str, str]],
|
||||||
|
system: Optional[str],
|
||||||
|
tools: Optional[str],
|
||||||
|
template: "Template",
|
||||||
|
tokenizer: "PreTrainedTokenizer",
|
||||||
|
processor: Optional["ProcessorMixin"],
|
||||||
|
data_args: "DataArguments",
|
||||||
|
) -> Tuple[List[int], List[int], List[int], List[int]]:
|
||||||
|
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||||
|
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||||
|
|
||||||
|
chosen_messages = prompt + [response[0]]
|
||||||
|
rejected_messages = prompt + [response[1]]
|
||||||
|
prompt_ids, chosen_ids = template.encode_oneturn(
|
||||||
|
tokenizer, chosen_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||||
|
)
|
||||||
|
_, rejected_ids = template.encode_oneturn(
|
||||||
|
tokenizer, rejected_messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||||
|
)
|
||||||
|
|
||||||
|
if template.efficient_eos:
|
||||||
|
chosen_ids += [tokenizer.eos_token_id]
|
||||||
|
rejected_ids += [tokenizer.eos_token_id]
|
||||||
|
|
||||||
|
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||||
|
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||||
|
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
||||||
|
|
||||||
|
chosen_input_ids = prompt_ids + chosen_ids
|
||||||
|
chosen_labels = [IGNORE_INDEX] * len(prompt_ids) + chosen_ids
|
||||||
|
rejected_input_ids = prompt_ids + rejected_ids
|
||||||
|
rejected_labels = [IGNORE_INDEX] * len(prompt_ids) + rejected_ids
|
||||||
|
|
||||||
|
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels
|
||||||
|
|
||||||
|
|
||||||
def preprocess_pairwise_dataset(
|
def preprocess_pairwise_dataset(
|
||||||
examples: Dict[str, List[Any]],
|
examples: Dict[str, List[Any]],
|
||||||
template: "Template",
|
template: "Template",
|
||||||
|
@ -43,40 +81,16 @@ def preprocess_pairwise_dataset(
|
||||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = _encode_pairwise_example(
|
||||||
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
|
prompt=examples["prompt"][i],
|
||||||
|
response=examples["response"][i],
|
||||||
chosen_messages = examples["prompt"][i] + [examples["response"][i][0]]
|
system=examples["system"][i],
|
||||||
rejected_messages = examples["prompt"][i] + [examples["response"][i][1]]
|
tools=examples["tools"][i],
|
||||||
prompt_ids, chosen_ids = template.encode_oneturn(
|
template=template,
|
||||||
tokenizer,
|
tokenizer=tokenizer,
|
||||||
chosen_messages,
|
processor=processor,
|
||||||
examples["system"][i],
|
data_args=data_args,
|
||||||
examples["tools"][i],
|
|
||||||
data_args.cutoff_len,
|
|
||||||
data_args.reserved_label_len,
|
|
||||||
)
|
)
|
||||||
_, rejected_ids = template.encode_oneturn(
|
|
||||||
tokenizer,
|
|
||||||
rejected_messages,
|
|
||||||
examples["system"][i],
|
|
||||||
examples["tools"][i],
|
|
||||||
data_args.cutoff_len,
|
|
||||||
data_args.reserved_label_len,
|
|
||||||
)
|
|
||||||
|
|
||||||
if template.efficient_eos:
|
|
||||||
chosen_ids += [tokenizer.eos_token_id]
|
|
||||||
rejected_ids += [tokenizer.eos_token_id]
|
|
||||||
|
|
||||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
|
||||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
|
||||||
prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids
|
|
||||||
|
|
||||||
chosen_input_ids = prompt_ids + chosen_ids
|
|
||||||
chosen_labels = [IGNORE_INDEX] * len(prompt_ids) + chosen_ids
|
|
||||||
rejected_input_ids = prompt_ids + rejected_ids
|
|
||||||
rejected_labels = [IGNORE_INDEX] * len(prompt_ids) + rejected_ids
|
|
||||||
model_inputs["chosen_input_ids"].append(chosen_input_ids)
|
model_inputs["chosen_input_ids"].append(chosen_input_ids)
|
||||||
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
|
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
|
||||||
model_inputs["chosen_labels"].append(chosen_labels)
|
model_inputs["chosen_labels"].append(chosen_labels)
|
||||||
|
|
|
@ -1,3 +1,4 @@
|
||||||
|
import bisect
|
||||||
from typing import TYPE_CHECKING, List, Sequence
|
from typing import TYPE_CHECKING, List, Sequence
|
||||||
|
|
||||||
from ...extras.packages import is_pillow_available
|
from ...extras.packages import is_pillow_available
|
||||||
|
@ -14,14 +15,50 @@ if TYPE_CHECKING:
|
||||||
from transformers.image_processing_utils import BaseImageProcessor
|
from transformers.image_processing_utils import BaseImageProcessor
|
||||||
|
|
||||||
|
|
||||||
|
def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
|
||||||
|
r"""
|
||||||
|
Finds the index of largest number that fits into the knapsack with the given capacity.
|
||||||
|
"""
|
||||||
|
index = bisect.bisect(numbers, capacity)
|
||||||
|
return -1 if index == 0 else (index - 1)
|
||||||
|
|
||||||
|
|
||||||
|
def greedy_knapsack(numbers: List[int], capacity: int) -> List[List[int]]:
|
||||||
|
r"""
|
||||||
|
An efficient greedy algorithm with binary search for the knapsack problem.
|
||||||
|
"""
|
||||||
|
numbers.sort() # sort numbers in ascending order for binary search
|
||||||
|
knapsacks = []
|
||||||
|
|
||||||
|
while numbers:
|
||||||
|
current_knapsack = []
|
||||||
|
remaining_capacity = capacity
|
||||||
|
|
||||||
|
while True:
|
||||||
|
index = search_for_fit(numbers, remaining_capacity)
|
||||||
|
if index == -1:
|
||||||
|
break # no more numbers fit in this knapsack
|
||||||
|
|
||||||
|
remaining_capacity -= numbers[index] # update the remaining capacity
|
||||||
|
current_knapsack.append(numbers.pop(index)) # add the number to knapsack
|
||||||
|
|
||||||
|
knapsacks.append(current_knapsack)
|
||||||
|
|
||||||
|
return knapsacks
|
||||||
|
|
||||||
|
|
||||||
def get_pixel_values(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "NDArray":
|
def get_pixel_values(images: Sequence["ImageObject"], processor: "ProcessorMixin") -> "NDArray":
|
||||||
# process visual inputs (currently only supports a single image)
|
r"""
|
||||||
|
Processes visual inputs. (currently only supports a single image)
|
||||||
|
"""
|
||||||
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
|
||||||
image = images[0] if len(images) != 0 else Image.new("RGB", (100, 100), (255, 255, 255))
|
image = images[0] if len(images) != 0 else Image.new("RGB", (100, 100), (255, 255, 255))
|
||||||
return image_processor(image, return_tensors="pt")["pixel_values"][0] # shape (C, H, W)
|
return image_processor(image, return_tensors="pt")["pixel_values"][0] # shape (C, H, W)
|
||||||
|
|
||||||
|
|
||||||
def get_paligemma_token_type_ids(input_len: int, processor: "ProcessorMixin") -> List[int]:
|
def get_paligemma_token_type_ids(input_len: int, processor: "ProcessorMixin") -> List[int]:
|
||||||
# get paligemma token type ids for computing loss
|
r"""
|
||||||
|
Gets paligemma token type ids for computing loss.
|
||||||
|
"""
|
||||||
image_seq_length = getattr(processor, "image_seq_length")
|
image_seq_length = getattr(processor, "image_seq_length")
|
||||||
return [0] * image_seq_length + [1] * (input_len - image_seq_length)
|
return [0] * image_seq_length + [1] * (input_len - image_seq_length)
|
||||||
|
|
|
@ -1,10 +1,9 @@
|
||||||
import bisect
|
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||||
|
|
||||||
from ...extras.constants import IGNORE_INDEX
|
from ...extras.constants import IGNORE_INDEX
|
||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values
|
from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, greedy_knapsack
|
||||||
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
if TYPE_CHECKING:
|
||||||
|
@ -18,38 +17,6 @@ if TYPE_CHECKING:
|
||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
def search_for_fit(numbers: Sequence[int], capacity: int) -> int:
|
|
||||||
r"""
|
|
||||||
Finds the index of largest number that fits into the knapsack with the given capacity.
|
|
||||||
"""
|
|
||||||
index = bisect.bisect(numbers, capacity)
|
|
||||||
return -1 if index == 0 else (index - 1)
|
|
||||||
|
|
||||||
|
|
||||||
def greedy_knapsack(numbers: List[int], capacity: int) -> List[List[int]]:
|
|
||||||
r"""
|
|
||||||
An efficient greedy algorithm with binary search for the knapsack problem.
|
|
||||||
"""
|
|
||||||
numbers.sort() # sort numbers in ascending order for binary search
|
|
||||||
knapsacks = []
|
|
||||||
|
|
||||||
while numbers:
|
|
||||||
current_knapsack = []
|
|
||||||
remaining_capacity = capacity
|
|
||||||
|
|
||||||
while True:
|
|
||||||
index = search_for_fit(numbers, remaining_capacity)
|
|
||||||
if index == -1:
|
|
||||||
break # no more numbers fit in this knapsack
|
|
||||||
|
|
||||||
remaining_capacity -= numbers[index] # update the remaining capacity
|
|
||||||
current_knapsack.append(numbers.pop(index)) # add the number to knapsack
|
|
||||||
|
|
||||||
knapsacks.append(current_knapsack)
|
|
||||||
|
|
||||||
return knapsacks
|
|
||||||
|
|
||||||
|
|
||||||
def _encode_supervised_example(
|
def _encode_supervised_example(
|
||||||
prompt: Sequence[Dict[str, str]],
|
prompt: Sequence[Dict[str, str]],
|
||||||
response: Sequence[Dict[str, str]],
|
response: Sequence[Dict[str, str]],
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
||||||
|
|
||||||
from ...extras.logging import get_logger
|
from ...extras.logging import get_logger
|
||||||
from ..data_utils import Role
|
from ..data_utils import Role
|
||||||
|
@ -16,6 +16,37 @@ if TYPE_CHECKING:
|
||||||
logger = get_logger(__name__)
|
logger = get_logger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
def _encode_unsupervised_example(
|
||||||
|
prompt: Sequence[Dict[str, str]],
|
||||||
|
response: Sequence[Dict[str, str]],
|
||||||
|
system: Optional[str],
|
||||||
|
tools: Optional[str],
|
||||||
|
template: "Template",
|
||||||
|
tokenizer: "PreTrainedTokenizer",
|
||||||
|
processor: Optional["ProcessorMixin"],
|
||||||
|
data_args: "DataArguments",
|
||||||
|
) -> Tuple[List[int], List[int]]:
|
||||||
|
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
||||||
|
prompt[0]["content"] = template.image_token + prompt[0]["content"]
|
||||||
|
|
||||||
|
if len(response) == 1:
|
||||||
|
messages = prompt + response
|
||||||
|
else:
|
||||||
|
messages = prompt + [{"role": Role.ASSISTANT.value, "content": ""}]
|
||||||
|
|
||||||
|
input_ids, labels = template.encode_oneturn(
|
||||||
|
tokenizer, messages, system, tools, data_args.cutoff_len, data_args.reserved_label_len
|
||||||
|
)
|
||||||
|
if template.efficient_eos:
|
||||||
|
labels += [tokenizer.eos_token_id]
|
||||||
|
|
||||||
|
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
||||||
|
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
||||||
|
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids
|
||||||
|
|
||||||
|
return input_ids, labels
|
||||||
|
|
||||||
|
|
||||||
def preprocess_unsupervised_dataset(
|
def preprocess_unsupervised_dataset(
|
||||||
examples: Dict[str, List[Any]],
|
examples: Dict[str, List[Any]],
|
||||||
template: "Template",
|
template: "Template",
|
||||||
|
@ -35,30 +66,16 @@ def preprocess_unsupervised_dataset(
|
||||||
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i]))
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models
|
input_ids, labels = _encode_unsupervised_example(
|
||||||
examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"]
|
prompt=examples["prompt"][i],
|
||||||
|
response=examples["response"][i],
|
||||||
if len(examples["response"][i]) == 1:
|
system=examples["system"][i],
|
||||||
messages = examples["prompt"][i] + examples["response"][i]
|
tools=examples["tools"][i],
|
||||||
else:
|
template=template,
|
||||||
messages = examples["prompt"][i] + [{"role": Role.ASSISTANT.value, "content": ""}]
|
tokenizer=tokenizer,
|
||||||
|
processor=processor,
|
||||||
input_ids, labels = template.encode_oneturn(
|
data_args=data_args,
|
||||||
tokenizer,
|
|
||||||
messages,
|
|
||||||
examples["system"][i],
|
|
||||||
examples["tools"][i],
|
|
||||||
data_args.cutoff_len,
|
|
||||||
data_args.reserved_label_len,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
if template.efficient_eos:
|
|
||||||
labels += [tokenizer.eos_token_id]
|
|
||||||
|
|
||||||
if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models
|
|
||||||
image_token_id = tokenizer.convert_tokens_to_ids(template.image_token)
|
|
||||||
input_ids = [image_token_id] * getattr(processor, "image_seq_length") + input_ids
|
|
||||||
|
|
||||||
model_inputs["input_ids"].append(input_ids)
|
model_inputs["input_ids"].append(input_ids)
|
||||||
model_inputs["attention_mask"].append([1] * len(input_ids))
|
model_inputs["attention_mask"].append([1] * len(input_ids))
|
||||||
model_inputs["labels"].append(labels)
|
model_inputs["labels"].append(labels)
|
||||||
|
|
Loading…
Reference in New Issue