Merge pull request #4352 from Ledzy/main

[Enhancement] Support ZeRO-3 when using BAdam
This commit is contained in:
hoshi-hiyouga 2024-06-25 01:49:13 +08:00 committed by GitHub
commit d0f953bf5b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
12 changed files with 149 additions and 24 deletions

2
.gitignore vendored
View File

@ -163,3 +163,5 @@ cython_debug/
user.config
saves/
cache/
wandb
ds_badam_exp

View File

@ -0,0 +1,40 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 2
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-6
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@ -0,0 +1,37 @@
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0
cd ../../..
llamafactory-cli train \
--stage sft \
--do_train True \
--model_name_or_path meta-llama/Llama-2-13b-hf \
--preprocessing_num_workers 16 \
--finetuning_type full \
--template default \
--flash_attn auto \
--dataset_dir data \
--dataset alpaca_en_demo \
--cutoff_len 1024 \
--learning_rate 1e-6 \
--num_train_epochs 3.0 \
--max_samples 100000 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 8 \
--lr_scheduler_type cosine \
--max_grad_norm 1.0 \
--logging_steps 5 \
--save_steps 100 \
--warmup_steps 0 \
--optim adamw_torch \
--packing False \
--report_to none \
--use_badam True \
--output_dir saves/LLaMA2-13B/full/BAdam \
--plot_loss True \
--ddp_timeout 180000000 \
--include_num_input_tokens_seen True \
--badam_mode layer \
--badam_switch_mode ascending \
--badam_switch_interval 50

View File

@ -0,0 +1,39 @@
#!/bin/bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
cd ../../..
llamafactory-cli train \
--stage sft \
--do_train True \
--model_name_or_path meta-llama/Llama-2-13b-hf \
--preprocessing_num_workers 16 \
--finetuning_type full \
--template default \
--flash_attn auto \
--dataset_dir data \
--dataset alpaca_en_demo \
--cutoff_len 1024 \
--learning_rate 1e-6 \
--num_train_epochs 3.0 \
--max_samples 100000 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 2 \
--lr_scheduler_type cosine \
--max_grad_norm 1.0 \
--logging_steps 5 \
--save_steps 100 \
--warmup_steps 0 \
--optim adamw_torch \
--packing False \
--report_to none \
--use_badam True \
--output_dir saves/LLaMA2-13B/full/BAdam \
--fp16 True \
--plot_loss True \
--ddp_timeout 180000000 \
--include_num_input_tokens_seen True \
--badam_mode layer \
--badam_switch_mode ascending \
--badam_switch_interval 50 \
--deepspeed cache/ds_z3_config.json

View File

@ -214,13 +214,15 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
if (
finetuning_args.use_badam
and finetuning_args.badam_mode == "layer"
and training_args.parallel_mode == ParallelMode.DISTRIBUTED
and training_args.parallel_mode.value == "distributed"
):
raise ValueError("Layer-wise BAdam does not yet support distributed training, use ratio-wise BAdam.")
if finetuning_args.badam_mode == "ratio":
raise ValueError("Ratio-wise BAdam does not yet support distributed training, use layer-wise BAdam: --badam_mode layer")
if finetuning_args.badam_mode == "layer" and (not is_deepspeed_zero3_enabled()):
raise ValueError(f"Layer-wise BAdam only supports DeepSpeed ZeRO 3 stage.")
if (finetuning_args.use_galore or finetuning_args.use_badam) and training_args.deepspeed is not None:
raise ValueError("GaLore and BAdam are incompatible with DeepSpeed yet.")
if (finetuning_args.use_galore) and training_args.deepspeed is not None:
raise ValueError("GaLore are incompatible with DeepSpeed yet.")
if model_args.infer_backend == "vllm":
raise ValueError("vLLM backend is only available for API, CLI and Web.")

View File

@ -96,9 +96,9 @@ class CustomDPOTrainer(DPOTrainer):
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
from badam import clip_grad_norm_old_version, BAdamCallback
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:

View File

@ -91,9 +91,9 @@ class CustomKTOTrainer(KTOTrainer):
self.ref_model.eval()
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
from badam import clip_grad_norm_old_version, BAdamCallback
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:

View File

@ -166,9 +166,9 @@ class CustomPPOTrainer(PPOTrainer, Trainer):
self.reward_model = self.accelerator.prepare_model(self.reward_model, evaluation_mode=True)
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
from badam import clip_grad_norm_old_version, BAdamCallback
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
def ppo_train(self, resume_from_checkpoint: Optional[str] = None) -> None:
r"""

View File

@ -48,9 +48,9 @@ class CustomTrainer(Trainer):
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
from badam import clip_grad_norm_old_version, BAdamCallback
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:

View File

@ -72,9 +72,9 @@ class PairwiseTrainer(Trainer):
self.processor = processor
self.can_return_loss = True # override property to return eval_loss
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
from badam import clip_grad_norm_old_version, BAdamCallback
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:

View File

@ -56,9 +56,9 @@ class CustomSeq2SeqTrainer(Seq2SeqTrainer):
self.save_model(os.path.join(self.args.output_dir, "pissa_init"))
if finetuning_args.use_badam:
from badam import clip_grad_norm_for_sparse_tensor
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_for_sparse_tensor, self.accelerator)
from badam import clip_grad_norm_old_version, BAdamCallback
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.callback_handler.add_callback(BAdamCallback)
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:

View File

@ -372,6 +372,9 @@ def _create_badam_optimizer(
dict(params=decay_params, weight_decay=training_args.weight_decay),
]
from transformers.integrations import is_deepspeed_zero3_enabled
ds_zero3_enabled = is_deepspeed_zero3_enabled()
if finetuning_args.badam_mode == "layer":
from badam import BlockOptimizer
@ -384,6 +387,7 @@ def _create_badam_optimizer(
start_block=finetuning_args.badam_start_block,
switch_mode=finetuning_args.badam_switch_mode,
verbose=finetuning_args.badam_verbose,
ds_zero3_enabled=ds_zero3_enabled
)
logger.info(
f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
@ -394,6 +398,7 @@ def _create_badam_optimizer(
elif finetuning_args.badam_mode == "ratio":
from badam import BlockOptimizerRatio
assert not ds_zero3_enabled, "BAdam with ratio-based update does not support Deepspeed ZeRO-3 yet, use layer-wise update instead: --badam_mode layer."
assert finetuning_args.badam_update_ratio > 1e-6
optimizer = BlockOptimizerRatio(
param_groups=param_groups,
@ -405,7 +410,7 @@ def _create_badam_optimizer(
**optim_kwargs,
)
logger.info(
f"Using BAdam optimizer with ratio-wise update, update ratio is {finetuning_args.badam_update_ratio}, "
f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, "
f"mask mode is {finetuning_args.badam_mask_mode}"
)