forked from p04798526/LLaMA-Factory-Mirror
parent
de19614306
commit
d11a545463
|
@ -14,11 +14,11 @@
|
|||
|
||||
## Changelog
|
||||
|
||||
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA). Try `--shift_attn` argument to enable shift short attention.
|
||||
[23/09/27] We supported **$S^2$-Attn** proposed by [LongLoRA](https://github.com/dvlab-research/LongLoRA) for the LLaMA models. Try `--shift_attn` argument to enable shift short attention.
|
||||
|
||||
[23/09/23] We integrated MMLU, C-Eval and CMMLU benchmarks in this repo. See [this example](#evaluation) to evaluate your models.
|
||||
|
||||
[23/09/10] We supported using **[FlashAttention](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
|
||||
[23/09/10] We supported using **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)** for the LLaMA models. Try `--flash_attn` argument to enable FlashAttention-2 if you are using RTX4090, A100 or H100 GPUs.
|
||||
|
||||
[23/08/18] We supported **resuming training**, upgrade `transformers` to `4.31.0` to enjoy this feature.
|
||||
|
||||
|
|
|
@ -14,11 +14,11 @@
|
|||
|
||||
## 更新日志
|
||||
|
||||
[23/09/27] 我们支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
|
||||
[23/09/27] 我们针对 LLaMA 模型支持了 [LongLoRA](https://github.com/dvlab-research/LongLoRA) 提出的 **$S^2$-Attn**。请使用 `--shift_attn` 参数以启用该功能。
|
||||
|
||||
[23/09/23] 我们在项目中集成了 MMLU、C-Eval 和 CMMLU 评估集。使用方法请参阅[此示例](#模型评估)。
|
||||
|
||||
[23/09/10] 我们支持了 LLaMA 模型的 **[FlashAttention](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `--flash_attn` 参数以启用 FlashAttention-2(实验性功能)。
|
||||
[23/09/10] 我们针对 LLaMA 模型支持了 **[FlashAttention-2](https://github.com/Dao-AILab/flash-attention)**。如果您使用的是 RTX4090、A100 或 H100 GPU,请使用 `--flash_attn` 参数以启用 FlashAttention-2(实验性功能)。
|
||||
|
||||
[23/08/18] 我们支持了**训练状态恢复**,请将 `transformers` 升级至 `4.31.0` 以启用此功能。
|
||||
|
||||
|
|
|
@ -160,4 +160,8 @@ class CMMLU(datasets.GeneratorBasedBuilder):
|
|||
def _generate_examples(self, filepath):
|
||||
df = pd.read_csv(filepath, header=0, index_col=0, encoding="utf-8")
|
||||
for i, instance in enumerate(df.to_dict(orient="records")):
|
||||
question = instance.pop("Question", "")
|
||||
answer = instance.pop("Answer", "")
|
||||
instance["question"] = question
|
||||
instance["answer"] = answer
|
||||
yield i, instance
|
||||
|
|
|
@ -51,7 +51,9 @@ SUPPORTED_MODELS = {
|
|||
"InternLM-7B-Chat": "internlm/internlm-chat-7b",
|
||||
"InternLM-20B-Chat": "internlm/internlm-chat-20b",
|
||||
"Qwen-7B": "Qwen/Qwen-7B",
|
||||
"Qwen-14B": "Qwen/Qwen-14B",
|
||||
"Qwen-7B-Chat": "Qwen/Qwen-7B-Chat",
|
||||
"Qwen-14B-Chat": "Qwen/Qwen-14B-Chat",
|
||||
"XVERSE-13B": "xverse/XVERSE-13B",
|
||||
"XVERSE-13B-Chat": "xverse/XVERSE-13B-Chat",
|
||||
"ChatGLM2-6B-Chat": "THUDM/chatglm2-6b",
|
||||
|
|
Loading…
Reference in New Issue