forked from p04798526/LLaMA-Factory-Mirror
disable DP
This commit is contained in:
parent
9092f963db
commit
d519b4d76d
|
@ -8,6 +8,7 @@ import transformers
|
|||
from transformers import HfArgumentParser, Seq2SeqTrainingArguments
|
||||
from transformers.integrations import is_deepspeed_zero3_enabled
|
||||
from transformers.trainer_utils import get_last_checkpoint
|
||||
from transformers.training_args import ParallelMode
|
||||
from transformers.utils import is_torch_bf16_gpu_available
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
|
@ -162,6 +163,9 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
|||
):
|
||||
raise ValueError("PPO only accepts wandb or tensorboard logger.")
|
||||
|
||||
if training_args.parallel_mode == ParallelMode.NOT_DISTRIBUTED:
|
||||
raise ValueError("Please launch distributed training with `llamafactory-cli` or `torchrun`.")
|
||||
|
||||
if training_args.max_steps == -1 and data_args.streaming:
|
||||
raise ValueError("Please specify `max_steps` in streaming mode.")
|
||||
|
||||
|
@ -181,14 +185,14 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
|||
if (
|
||||
finetuning_args.use_galore
|
||||
and finetuning_args.galore_layerwise
|
||||
and training_args.parallel_mode.value == "distributed"
|
||||
and training_args.parallel_mode == ParallelMode.DISTRIBUTED
|
||||
):
|
||||
raise ValueError("Distributed training does not support layer-wise GaLore.")
|
||||
|
||||
if (
|
||||
finetuning_args.use_badam
|
||||
and finetuning_args.badam_mode == "layer"
|
||||
and training_args.parallel_mode.value == "distributed"
|
||||
and training_args.parallel_mode == ParallelMode.DISTRIBUTED
|
||||
):
|
||||
raise ValueError("Layer-wise BAdam does not yet support distributed training, use ratio-wise BAdam.")
|
||||
|
||||
|
@ -230,7 +234,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
|||
|
||||
# Post-process training arguments
|
||||
if (
|
||||
training_args.parallel_mode.value == "distributed"
|
||||
training_args.parallel_mode == ParallelMode.DISTRIBUTED
|
||||
and training_args.ddp_find_unused_parameters is None
|
||||
and finetuning_args.finetuning_type == "lora"
|
||||
):
|
||||
|
@ -290,7 +294,7 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
|
|||
training_args.local_rank,
|
||||
training_args.device,
|
||||
training_args.n_gpu,
|
||||
training_args.parallel_mode.value == "distributed",
|
||||
training_args.parallel_mode == ParallelMode.DISTRIBUTED,
|
||||
str(model_args.compute_dtype),
|
||||
)
|
||||
)
|
||||
|
|
Loading…
Reference in New Issue