forked from p04798526/LLaMA-Factory-Mirror
Merge pull request #4417 from mMrBun/main
Add tool_format parameter to rewrite templates for different function call formats.
This commit is contained in:
commit
def6d280db
|
@ -54,7 +54,7 @@ class HuggingfaceEngine(BaseEngine):
|
||||||
self.tokenizer = tokenizer_module["tokenizer"]
|
self.tokenizer = tokenizer_module["tokenizer"]
|
||||||
self.processor = tokenizer_module["processor"]
|
self.processor = tokenizer_module["processor"]
|
||||||
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
self.tokenizer.padding_side = "left" if self.can_generate else "right"
|
||||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template, data_args.tool_format)
|
||||||
self.model = load_model(
|
self.model = load_model(
|
||||||
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
self.tokenizer, model_args, finetuning_args, is_trainable=False, add_valuehead=(not self.can_generate)
|
||||||
) # must after fixing tokenizer to resize vocab
|
) # must after fixing tokenizer to resize vocab
|
||||||
|
|
|
@ -59,7 +59,7 @@ class VllmEngine(BaseEngine):
|
||||||
self.tokenizer = tokenizer_module["tokenizer"]
|
self.tokenizer = tokenizer_module["tokenizer"]
|
||||||
self.processor = tokenizer_module["processor"]
|
self.processor = tokenizer_module["processor"]
|
||||||
self.tokenizer.padding_side = "left"
|
self.tokenizer.padding_side = "left"
|
||||||
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template, data_args.tool_format)
|
||||||
self.generating_args = generating_args.to_dict()
|
self.generating_args = generating_args.to_dict()
|
||||||
|
|
||||||
engine_args = {
|
engine_args = {
|
||||||
|
|
|
@ -148,7 +148,7 @@ def get_dataset(
|
||||||
tokenizer: "PreTrainedTokenizer",
|
tokenizer: "PreTrainedTokenizer",
|
||||||
processor: Optional["ProcessorMixin"] = None,
|
processor: Optional["ProcessorMixin"] = None,
|
||||||
) -> Union["Dataset", "IterableDataset"]:
|
) -> Union["Dataset", "IterableDataset"]:
|
||||||
template = get_template_and_fix_tokenizer(tokenizer, data_args.template)
|
template = get_template_and_fix_tokenizer(tokenizer, data_args.template, data_args.tool_format)
|
||||||
if data_args.train_on_prompt and template.efficient_eos:
|
if data_args.train_on_prompt and template.efficient_eos:
|
||||||
raise ValueError("Current template does not support `train_on_prompt`.")
|
raise ValueError("Current template does not support `train_on_prompt`.")
|
||||||
|
|
||||||
|
|
|
@ -379,6 +379,7 @@ def _get_jinja_template(template: "Template", tokenizer: "PreTrainedTokenizer")
|
||||||
def get_template_and_fix_tokenizer(
|
def get_template_and_fix_tokenizer(
|
||||||
tokenizer: "PreTrainedTokenizer",
|
tokenizer: "PreTrainedTokenizer",
|
||||||
name: Optional[str] = None,
|
name: Optional[str] = None,
|
||||||
|
tool_format: Optional[str] = None,
|
||||||
) -> Template:
|
) -> Template:
|
||||||
if name is None:
|
if name is None:
|
||||||
template = TEMPLATES["empty"] # placeholder
|
template = TEMPLATES["empty"] # placeholder
|
||||||
|
@ -387,6 +388,9 @@ def get_template_and_fix_tokenizer(
|
||||||
if template is None:
|
if template is None:
|
||||||
raise ValueError("Template {} does not exist.".format(name))
|
raise ValueError("Template {} does not exist.".format(name))
|
||||||
|
|
||||||
|
if tool_format:
|
||||||
|
template.format_tools = ToolFormatter(tool_format=tool_format)
|
||||||
|
|
||||||
stop_words = template.stop_words
|
stop_words = template.stop_words
|
||||||
if template.replace_eos:
|
if template.replace_eos:
|
||||||
if not stop_words:
|
if not stop_words:
|
||||||
|
|
|
@ -29,6 +29,10 @@ class DataArguments:
|
||||||
default=None,
|
default=None,
|
||||||
metadata={"help": "Which template to use for constructing prompts in training and inference."},
|
metadata={"help": "Which template to use for constructing prompts in training and inference."},
|
||||||
)
|
)
|
||||||
|
tool_format: Optional[str] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={"help": "Specifies the tool format template for function calling ."},
|
||||||
|
)
|
||||||
dataset: Optional[str] = field(
|
dataset: Optional[str] = field(
|
||||||
default=None,
|
default=None,
|
||||||
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
|
metadata={"help": "The name of provided dataset(s) to use. Use commas to separate multiple datasets."},
|
||||||
|
|
|
@ -111,9 +111,9 @@ def test_glm4_tool_formatter():
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
assert formatter.apply(content=json.dumps(tools)) == [
|
assert formatter.apply(content=json.dumps(tools)) == [
|
||||||
"你是一个名为 GLM-4 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,"
|
"你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,"
|
||||||
"你的任务是针对用户的问题和要求提供适当的答复和支持。"
|
"你的任务是针对用户的问题和要求提供适当的答复和支持。# 可用工具\n\n"
|
||||||
"\n\n## test_tool\n\n{}\n在调用上述函数时,请使用 Json 格式表示调用的参数。".format(
|
"## test_tool\n\n{}\n在调用上述函数时,请使用 Json 格式表示调用的参数。".format(
|
||||||
json.dumps(tools[0], indent=4)
|
json.dumps(tools[0], indent=4)
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
Loading…
Reference in New Issue