add adam_mini to readme

This commit is contained in:
hiyouga 2024-08-09 20:02:03 +08:00
parent ef482394f0
commit e2a28f51c6
12 changed files with 94 additions and 34 deletions

View File

@ -49,7 +49,7 @@ Choose your path:
- **Various models**: LLaMA, LLaVA, Mistral, Mixtral-MoE, Qwen, Yi, Gemma, Baichuan, ChatGLM, Phi, etc.
- **Integrated methods**: (Continuous) pre-training, (multimodal) supervised fine-tuning, reward modeling, PPO, DPO, KTO, ORPO, etc.
- **Scalable resources**: 16-bit full-tuning, freeze-tuning, LoRA and 2/3/4/5/6/8-bit QLoRA via AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ.
- **Advanced algorithms**: GaLore, BAdam, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
- **Advanced algorithms**: GaLore, BAdam, Adam-mini, DoRA, LongLoRA, LLaMA Pro, Mixture-of-Depths, LoRA+, LoftQ, PiSSA and Agent tuning.
- **Practical tricks**: FlashAttention-2, Unsloth, RoPE scaling, NEFTune and rsLoRA.
- **Experiment monitors**: LlamaBoard, TensorBoard, Wandb, MLflow, etc.
- **Faster inference**: OpenAI-style API, Gradio UI and CLI with vLLM worker.
@ -71,14 +71,16 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
## Changelog
[24/08/09] We support **[Adam-mini](https://arxiv.org/abs/2406.16793)** optimizer. See [examples](examples/README.md) for usage. Thank @relic-yuexi for PR.
[24/06/16] We support **[PiSSA](https://arxiv.org/abs/2404.02948)** algorithm. See [examples](examples/README.md) for usage.
[24/06/07] We supported fine-tuning the **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** and **[GLM-4](https://github.com/THUDM/GLM-4)** models.
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.
<details><summary>Full Changelog</summary>
[24/05/26] We supported **[SimPO](https://arxiv.org/abs/2405.14734)** algorithm for preference learning. See [examples](examples/README.md) for usage.
[24/05/20] We supported fine-tuning the **PaliGemma** series models. Note that the PaliGemma models are pre-trained models, you need to fine-tune them with `gemma` template for chat completion.
[24/05/18] We supported **[KTO](https://arxiv.org/abs/2402.01306)** algorithm for preference learning. See [examples](examples/README.md) for usage.
@ -91,7 +93,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
[24/04/21] We supported **[Mixture-of-Depths](https://arxiv.org/abs/2404.02258)** according to [AstraMindAI's implementation](https://github.com/astramind-ai/Mixture-of-depths). See [examples](examples/README.md) for usage.
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)**. See [examples](examples/README.md) for usage.
[24/04/16] We supported **[BAdam](https://arxiv.org/abs/2404.02827)** optimizer. See [examples](examples/README.md) for usage.
[24/04/16] We supported **[unsloth](https://github.com/unslothai/unsloth)**'s long-sequence training (Llama-2-7B-56k within 24GB). It achieves **117%** speed and **50%** memory compared with FlashAttention-2, more benchmarks can be found in [this page](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison).
@ -103,7 +105,7 @@ Compared to ChatGLM's [P-Tuning](https://github.com/THUDM/ChatGLM2-6B/tree/main/
[24/03/13] We supported **[LoRA+](https://arxiv.org/abs/2402.12354)**. See [examples](examples/README.md) for usage.
[24/03/07] We supported gradient low-rank projection (**[GaLore](https://arxiv.org/abs/2403.03507)**) algorithm. See [examples](examples/README.md) for usage.
[24/03/07] We supported **[GaLore](https://arxiv.org/abs/2403.03507)** optimizer. See [examples](examples/README.md) for usage.
[24/03/07] We integrated **[vLLM](https://github.com/vllm-project/vllm)** for faster and concurrent inference. Try `infer_backend: vllm` to enjoy **270%** inference speed.
@ -342,7 +344,7 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]"
```
Extra dependencies available: torch, torch-npu, metrics, deepspeed, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, qwen, modelscope, quality
Extra dependencies available: torch, torch-npu, metrics, deepspeed, bitsandbytes, hqq, eetq, gptq, awq, aqlm, vllm, galore, badam, adam-mini, qwen, modelscope, quality
> [!TIP]
> Use `pip install --no-deps -e .` to resolve package conflicts.

View File

@ -49,7 +49,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
- **多种模型**LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Yi、Gemma、Baichuan、ChatGLM、Phi 等等。
- **集成方法**增量预训练、多模态指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
- **多种精度**16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
- **先进算法**GaLore、BAdam、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
- **先进算法**GaLore、BAdam、Adam-mini、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ、PiSSA 和 Agent 微调。
- **实用技巧**FlashAttention-2、Unsloth、RoPE scaling、NEFTune 和 rsLoRA。
- **实验监控**LlamaBoard、TensorBoard、Wandb、MLflow 等等。
- **极速推理**:基于 vLLM 的 OpenAI 风格 API、浏览器界面和命令行接口。
@ -71,14 +71,16 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
## 更新日志
[24/08/09] 我们支持了 **[Adam-mini](https://arxiv.org/abs/2406.16793)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。感谢 @relic-yuexi 的 PR。
[24/06/16] 我们支持了 **[PiSSA](https://arxiv.org/abs/2404.02948)** 算法。详细用法请参照 [examples](examples/README_zh.md)。
[24/06/07] 我们支持了 **[Qwen2](https://qwenlm.github.io/blog/qwen2/)** 和 **[GLM-4](https://github.com/THUDM/GLM-4)** 模型的微调。
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
<details><summary>展开日志</summary>
[24/05/26] 我们支持了 **[SimPO](https://arxiv.org/abs/2405.14734)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
[24/05/20] 我们支持了 **PaliGemma** 系列模型的微调。注意 PaliGemma 是预训练模型,你需要使用 `gemma` 模板进行微调使其获得对话能力。
[24/05/18] 我们支持了 **[KTO](https://arxiv.org/abs/2402.01306)** 偏好对齐算法。详细用法请参照 [examples](examples/README_zh.md)。
@ -91,7 +93,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
[24/04/21] 我们基于 [AstraMindAI 的仓库](https://github.com/astramind-ai/Mixture-of-depths)支持了 **[混合深度训练](https://arxiv.org/abs/2404.02258)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/16] 我们支持了 **[BAdam](https://arxiv.org/abs/2404.02827)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。
[24/04/16] 我们支持了 **[unsloth](https://github.com/unslothai/unsloth)** 的长序列训练24GB 可训练 Llama-2-7B-56k。该方法相比 FlashAttention-2 提供了 **117%** 的训练速度和 **50%** 的显存节约。更多数据请见[此页面](https://github.com/hiyouga/LLaMA-Factory/wiki/Performance-comparison)。
@ -103,7 +105,7 @@ https://github.com/user-attachments/assets/e6ce34b0-52d5-4f3e-a830-592106c4c272
[24/03/13] 我们支持了 **[LoRA+](https://arxiv.org/abs/2402.12354)**。详细用法请参照 [examples](examples/README_zh.md)。
[24/03/07] 我们支持了梯度低秩投影(**[GaLore](https://arxiv.org/abs/2403.03507)**)算法。详细用法请参照 [examples](examples/README_zh.md)。
[24/03/07] 我们支持了 **[GaLore](https://arxiv.org/abs/2403.03507)** 优化器。详细用法请参照 [examples](examples/README_zh.md)。
[24/03/07] 我们集成了 **[vLLM](https://github.com/vllm-project/vllm)** 以实现极速并发推理。请使用 `infer_backend: vllm` 来获得 **270%** 的推理速度。
@ -342,7 +344,7 @@ cd LLaMA-Factory
pip install -e ".[torch,metrics]"
```
可选的额外依赖项torch、torch-npu、metrics、deepspeed、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、qwen、modelscope、quality
可选的额外依赖项torch、torch-npu、metrics、deepspeed、bitsandbytes、hqq、eetq、gptq、awq、aqlm、vllm、galore、badam、adam-mini、qwen、modelscope、quality
> [!TIP]
> 遇到包冲突时,可使用 `pip install --no-deps -e .` 解决。

View File

@ -189,6 +189,12 @@ llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### Full-Parameter Fine-Tuning using Adam-mini
```bash
llamafactory-cli train examples/extras/adam_mini/llama3_full_sft.yaml
```
#### LoRA+ Fine-Tuning
```bash

View File

@ -189,6 +189,12 @@ llamafactory-cli train examples/extras/galore/llama3_full_sft.yaml
llamafactory-cli train examples/extras/badam/llama3_full_sft.yaml
```
#### 使用 Adam-mini 进行全参数训练
```bash
llamafactory-cli train examples/extras/adam_mini/llama3_full_sft.yaml
```
#### LoRA+ 微调
```bash

View File

@ -0,0 +1,39 @@
### model
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
### method
stage: sft
do_train: true
finetuning_type: full
use_adam_mini: true
### dataset
dataset: identity,alpaca_en_demo
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b/full/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### train
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 1.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 500

View File

@ -34,6 +34,7 @@ num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
pure_bf16: true
ddp_timeout: 180000000
### eval
val_size: 0.1

View File

@ -2,5 +2,5 @@
python scripts/llama_pro.py \
--model_name_or_path meta-llama/Meta-Llama-3-8B-Instruct \
--output_dir models/llama3-8b-instruct-pro \
--output_dir models/llama3-8b-pro \
--num_expand 8

View File

@ -1,5 +1,5 @@
### model
model_name_or_path: models/llama3-8b-instruct-pro
model_name_or_path: models/llama3-8b-pro
### method
stage: sft
@ -18,7 +18,7 @@ overwrite_cache: true
preprocessing_num_workers: 16
### output
output_dir: saves/llama3-8b-instruct-pro/freeze/sft
output_dir: saves/llama3-8b-pro/freeze/sft
logging_steps: 10
save_steps: 500
plot_loss: true

View File

@ -47,6 +47,7 @@ extra_require = {
"vllm": ["vllm>=0.4.3"],
"galore": ["galore-torch"],
"badam": ["badam>=1.2.1"],
"adam-mini": ["adam-mini"],
"qwen": ["transformers_stream_generator"],
"modelscope": ["modelscope"],
"dev": ["ruff", "pytest"],

View File

@ -326,6 +326,10 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
default=False,
metadata={"help": "Whether or not to make only the parameters in the expanded blocks trainable."},
)
use_adam_mini: bool = field(
default=False,
metadata={"help": "Whether or not to use the Adam-mini optimizer."},
)
freeze_vision_tower: bool = field(
default=True,
metadata={"help": "Whether ot not to freeze vision tower in MLLM training."},
@ -342,10 +346,6 @@ class FinetuningArguments(FreezeArguments, LoraArguments, RLHFArguments, GaloreA
default=False,
metadata={"help": "Whether or not to save the training loss curves."},
)
use_adammini: bool = field(
default=False,
metadata={"help": "Whether or not to use AdamMini optimizer."},
)
def __post_init__(self):
def split_arg(arg):

View File

@ -128,6 +128,9 @@ def _check_extra_dependencies(
if finetuning_args.use_badam:
require_version("badam>=1.2.1", "To fix: pip install badam>=1.2.1")
if finetuning_args.use_adam_mini:
require_version("adam-mini", "To fix: pip install adam-mini")
if finetuning_args.plot_loss:
require_version("matplotlib", "To fix: pip install matplotlib")

View File

@ -22,6 +22,7 @@ from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
import torch
from transformers import Trainer
from transformers.integrations import is_deepspeed_zero3_enabled
from transformers.modeling_utils import is_fsdp_enabled
from transformers.optimization import get_scheduler
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
from transformers.trainer_pt_utils import get_parameter_names
@ -365,18 +366,16 @@ def _create_badam_optimizer(
return optimizer
def _create_adammini_optimizer(
def _create_adam_mini_optimizer(
model: "PreTrainedModel",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
) -> "torch.optim.Optimizer":
from adam_mini import Adam_mini
n_embd = model.config.hidden_size
n_head = model.config.num_attention_heads
n_query_groups = getattr(model.config, "num_key_value_heads", n_head)
print("n_embd", n_embd, "n_head", n_head, "n_query_groups", n_query_groups)
hidden_size = getattr(model.config, "hidden_size", None)
num_q_head = getattr(model.config, "num_attention_heads", None)
num_kv_head = getattr(model.config, "num_key_value_heads", None)
optimizer = Adam_mini(
named_parameters=model.named_parameters(),
@ -384,14 +383,15 @@ def _create_adammini_optimizer(
betas=(training_args.adam_beta1, training_args.adam_beta2),
eps=training_args.adam_epsilon,
weight_decay=training_args.weight_decay,
model_sharding=False,
dim=n_embd,
n_heads=n_head,
n_kv_heads=n_query_groups,
model_sharding=is_fsdp_enabled() or is_deepspeed_zero3_enabled(),
dim=hidden_size,
n_heads=num_q_head,
n_kv_heads=num_kv_head,
)
logger.info("Using Adam-mini optimizer.")
return optimizer
def create_custom_optimizer(
model: "PreTrainedModel",
training_args: "Seq2SeqTrainingArguments",
@ -406,8 +406,8 @@ def create_custom_optimizer(
if finetuning_args.use_badam:
return _create_badam_optimizer(model, training_args, finetuning_args)
if finetuning_args.use_adammini:
return _create_adammini_optimizer(model, training_args, finetuning_args)
if finetuning_args.use_adam_mini:
return _create_adam_mini_optimizer(model, training_args)
def create_custom_scheduler(