move efficient_packing from data_args to model_args

This commit is contained in:
ancv 2024-07-02 18:37:55 +07:00
parent e8e6af2651
commit e8e13b0942
8 changed files with 20 additions and 18 deletions

View File

@ -177,7 +177,7 @@ def get_dataset(
with training_args.main_process_first(desc="pre-process dataset"):
preprocess_func, print_function = get_preprocess_and_print_func(
data_args, training_args, stage, template, tokenizer, processor
data_args, model_args, training_args, stage, template, tokenizer, processor
)
column_names = list(next(iter(dataset)).keys())
kwargs = {}

View File

@ -29,12 +29,13 @@ from .processors.unsupervised import preprocess_unsupervised_dataset, print_unsu
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin, Seq2SeqTrainingArguments
from ..hparams import DataArguments
from ..hparams import DataArguments, ModelArguments
from .template import Template
def get_preprocess_and_print_func(
data_args: "DataArguments",
model_args: "ModelArguments",
training_args: "Seq2SeqTrainingArguments",
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
template: "Template",
@ -49,7 +50,7 @@ def get_preprocess_and_print_func(
)
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
elif stage == "sft" and not training_args.predict_with_generate:
if data_args.packing or data_args.efficient_packing:
if data_args.packing or model_args.efficient_packing:
preprocess_func = partial(
preprocess_packed_supervised_dataset,
template=template,

View File

@ -23,7 +23,7 @@ from .processor_utils import get_paligemma_token_type_ids, get_pixel_values, gre
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer, ProcessorMixin
from ...hparams import DataArguments
from ...hparams import DataArguments, ModelArguments
from ..template import Template
@ -125,6 +125,7 @@ def preprocess_packed_supervised_dataset(
template: "Template",
tokenizer: "PreTrainedTokenizer",
data_args: "DataArguments",
model_args: "ModelArguments"
) -> Dict[str, List[List[int]]]:
# build inputs with format `<bos> X1 Y1 <eos> <bos> X2 Y2 <eos>`
# and labels with format `<ignore> ... <ignore> Y1 <eos> <ignore> ... <ignore> Y2 <eos>`
@ -176,7 +177,7 @@ def preprocess_packed_supervised_dataset(
raise ValueError("The length of packed example should be identical to the cutoff length.")
model_inputs["input_ids"].append(packed_input_ids)
if data_args.efficient_packing:
if model_args.efficient_packing:
model_inputs["attention_mask"].append(packed_attention_mask)
else:
model_inputs["attention_mask"].append([1] * data_args.cutoff_len)

View File

@ -97,12 +97,6 @@ class DataArguments:
"help": "Whether or not to pack the sequences in training. Will automatically enable in pre-training."
},
)
efficient_packing: Optional[bool] = field(
default=None,
metadata={
"help": "Whether or not to pack the sequences without cross-contamination attention for efficient training."
},
)
tool_format: Optional[str] = field(
default=None,
metadata={"help": "Tool format to use for constructing function calling examples."},

View File

@ -109,6 +109,12 @@ class ModelArguments:
default=False,
metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."},
)
efficient_packing: Optional[bool] = field(
default=None,
metadata={
"help": "Whether or not to pack the sequences without cross-contamination attention for efficient training."
},
)
mixture_of_depths: Optional[Literal["convert", "load"]] = field(
default=None,
metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."},

View File

@ -170,6 +170,9 @@ def get_train_args(args: Optional[Dict[str, Any]] = None) -> _TRAIN_CLS:
if finetuning_args.stage == "ppo" and model_args.shift_attn:
raise ValueError("PPO training is incompatible with S^2-Attn.")
if finetuning_args.stage != "sft" and model_args.efficient_packing:
raise ValueError("`efficient_packing` cannot be set as True except SFT.")
if finetuning_args.stage == "ppo" and finetuning_args.reward_model_type == "lora" and model_args.use_unsloth:
raise ValueError("Unsloth does not support lora reward model.")

View File

@ -31,7 +31,7 @@ from .patcher import patch_config, patch_model, patch_tokenizer, patch_valuehead
if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedModel, PreTrainedTokenizer, ProcessorMixin
from ..hparams import FinetuningArguments, ModelArguments, DataArguments
from ..hparams import FinetuningArguments, ModelArguments
logger = get_logger(__name__)
@ -120,7 +120,6 @@ def load_config(model_args: "ModelArguments") -> "PretrainedConfig":
def load_model(
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
is_trainable: bool = False,
add_valuehead: bool = False,
@ -130,7 +129,7 @@ def load_model(
"""
init_kwargs = _get_init_kwargs(model_args)
config = load_config(model_args)
patch_config(config, tokenizer, model_args, data_args, finetuning_args, init_kwargs, is_trainable)
patch_config(config, tokenizer, model_args, init_kwargs, is_trainable)
model = None
lazy_load = False

View File

@ -39,7 +39,7 @@ if TYPE_CHECKING:
from transformers import PretrainedConfig, PreTrainedTokenizer
from trl import AutoModelForCausalLMWithValueHead
from ..hparams import ModelArguments, DataArguments, FinetuningArguments
from ..hparams import ModelArguments
logger = get_logger(__name__)
@ -54,8 +54,6 @@ def patch_config(
config: "PretrainedConfig",
tokenizer: "PreTrainedTokenizer",
model_args: "ModelArguments",
data_args: "DataArguments",
finetune_args: "FinetuningArguments",
init_kwargs: Dict[str, Any],
is_trainable: bool,
) -> None:
@ -104,7 +102,7 @@ def patch_config(
if init_kwargs.get("device_map", None) == "auto":
init_kwargs["offload_folder"] = model_args.offload_folder
if finetune_args.stage == "sft" and data_args.efficient_packing:
if model_args.efficient_packing:
configure_packing(config, model_args)