If you are using a custom dataset, please provide your dataset definition in the following format in `dataset_info.json`. ```json "dataset_name": { "hf_hub_url": "the name of the dataset repository on the Hugging Face hub. (if specified, ignore below 3 arguments)", "script_url": "the name of the directory containing a dataset loading script. (if specified, ignore below 2 arguments)", "file_name": "the name of the dataset file in the this directory. (required if above are not specified)", "file_sha1": "the SHA-1 hash value of the dataset file. (optional, does not affect training)", "subset": "the name of the subset. (optional, default: None)", "ranking": "whether the dataset is a preference dataset or not. (default: false)", "formatting": "the format of the dataset. (optional, default: alpaca, can be chosen from {alpaca, sharegpt})", "columns": { "prompt": "the column name in the dataset containing the prompts. (default: instruction, for alpaca)", "query": "the column name in the dataset containing the queries. (default: input, for alpaca)", "response": "the column name in the dataset containing the responses. (default: output, for alpaca)", "history": "the column name in the dataset containing the histories. (default: None, for alpaca)", "messages": "the column name in the dataset containing the messages. (default: conversations, for sharegpt)", "role": "the key in the message represents the identity. (default: from, for sharegpt)", "content": "the key in the message represents the content. (default: value, for sharegpt)" } } ``` Given above, you can use the custom dataset via specifying `--dataset dataset_name`. Currently we support dataset in **alpaca** or **sharegpt** format, the dataset in alpaca format should follow the below format: ```json [ { "instruction": "user instruction (required)", "input": "user input (optional)", "output": "model response (required)", "history": [ ["user instruction in the first round (optional)", "model response in the first round (optional)"], ["user instruction in the second round (optional)", "model response in the second round (optional)"] ] } ] ``` Regarding the above dataset, the `columns` in `dataset_info.json` should be: ```json "dataset_name": { "columns": { "prompt": "instruction", "query": "input", "response": "output", "history": "history" } } ``` where the `prompt` and `response` columns should contain non-empty values, represent instruction and response respectively. The `query` column will be concatenated with the `prompt` column and used as input for the model. The `history` column is a list consisting string tuples representing query-response pairs in history. Note that the responses **in each round will be used for training**. For the pre-training datasets, only the `prompt` column will be used for training. For the preference datasets, the `response` column should be a string list whose length is 2, with the preferred answers appearing first, for example: ```json { "instruction": "user instruction", "input": "user input", "output": [ "chosen answer", "rejected answer" ] } ``` The dataset in sharegpt format should follow the below format: ```json [ { "conversations": [ { "from": "human", "value": "user instruction" }, { "from": "gpt", "value": "model response" } ] } ] ``` Regarding the above dataset, the `columns` in `dataset_info.json` should be: ```json "dataset_name": { "columns": { "messages": "conversations", "role": "from", "content": "value" } } ``` where the `messages` column should be a list whose length is even, and follow the `u/a/u/a/u/a` order. Pre-training datasets and preference datasets are incompatible with the sharegpt format yet.