forked from p04798526/LLaMA-Factory-Mirror
50 lines
2.1 KiB
Python
50 lines
2.1 KiB
Python
# coding=utf-8
|
|
# Quantizes models with AutoGPTQ (https://github.com/PanQiWei/AutoGPTQ).
|
|
# Usage: python quantize.py --input_dir path_to_llama_model --output_dir path_to_quant_model --data_file alpaca.json
|
|
# --max_length 1024 --max_samples 1024
|
|
# dataset format: instruction (string), input (string), output (string), history (List[string])
|
|
|
|
import fire
|
|
from datasets import load_dataset
|
|
from transformers import AutoTokenizer
|
|
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
|
|
|
|
|
def quantize(input_dir: str, output_dir: str, data_file: str, max_length: int, max_samples: int):
|
|
tokenizer = AutoTokenizer.from_pretrained(input_dir, use_fast=False, padding_side="left")
|
|
|
|
def format_example(examples):
|
|
prefix=("A chat between a curious user and an artificial intelligence assistant. "
|
|
"The assistant gives helpful, detailed, and polite answers to the user's questions.")
|
|
texts = []
|
|
for i in range(len(examples["instruction"])):
|
|
prompt = prefix + "\n"
|
|
if "history" in examples:
|
|
for user_query, bot_resp in examples["history"][i]:
|
|
prompt += "Human: {}\nAssistant: {}\n".format(user_query, bot_resp)
|
|
prompt += "Human: {}\nAssistant: {}".format(
|
|
examples["instruction"][i] + "\n" + examples["input"][i], examples["output"][i]
|
|
)
|
|
texts.append(prompt)
|
|
return tokenizer(texts, truncation=True, max_length=max_length)
|
|
|
|
dataset = load_dataset("json", data_files=data_file)["train"]
|
|
column_names = list(dataset.column_names)
|
|
dataset = dataset.select(range(min(len(dataset), max_samples)))
|
|
dataset = dataset.map(format_example, batched=True, remove_columns=column_names)
|
|
dataset = dataset.shuffle()
|
|
|
|
quantize_config = BaseQuantizeConfig(
|
|
bits=4,
|
|
group_size=128,
|
|
desc_act=False
|
|
)
|
|
|
|
model = AutoGPTQForCausalLM.from_pretrained(input_dir, quantize_config, trust_remote_code=True)
|
|
model.quantize(dataset)
|
|
model.save_quantized(output_dir)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(quantize)
|